Functioning of the maxillary apparatus of fish: modeling and kinematic analysis of the crank-and-link mechanism
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 551-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

To study the functioning of the jaw apparatus of fish was developed and tested kinematic scheme using crank mechanism. This model is a modified analogue of the previously used four-link hinge system. In this development, based on empirical studies, was taken into account the immobility of the pterygoid and Palatine bones, which in previous works were considered as moving elements. The application of the analytical approach allowed to determine the dependence of the angles and links of the mechanism, as well as the kinematic characteristics of the upper and lower jaw blocks. The morphometric data of the jaw apparatus of two closely related species of coastal Cottoidei, characterized by linear parameters of bones, were used for the implementation of kinematic analysis. As a result of the study, it was found that the increase in the length of the jaws affects the space-time kinematic characteristics, changing the amplitude and speed of movement. It is shown that the angle of rotation and the angular velocity of the maxillary block decreases with the transition of views to the power of large objects, since the extension of the mouth becomes less relevant and is compensated by an increase in its size. At the same time, this provides an increase in the angle of rotation of the mandibular block and, accordingly, the maximum height of the mouth opening. In General, the resulting kinematic scheme and analytical dependences can be used to calculate the range of possible options and the speed of movements in different species of fish with a similar type of jaw apparatus.
@article{MBB_2018_13_2_a18,
     author = {Yuliya Tolmacheva and Anna Chmatkova and Tyuen Vyu Din and Valentina Kuzlyakina},
     title = {Functioning of the maxillary apparatus of fish: modeling and kinematic analysis of the crank-and-link mechanism},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {551--562},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a18/}
}
TY  - JOUR
AU  - Yuliya Tolmacheva
AU  - Anna Chmatkova
AU  - Tyuen Vyu Din
AU  - Valentina Kuzlyakina
TI  - Functioning of the maxillary apparatus of fish: modeling and kinematic analysis of the crank-and-link mechanism
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 551
EP  - 562
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a18/
LA  - ru
ID  - MBB_2018_13_2_a18
ER  - 
%0 Journal Article
%A Yuliya Tolmacheva
%A Anna Chmatkova
%A Tyuen Vyu Din
%A Valentina Kuzlyakina
%T Functioning of the maxillary apparatus of fish: modeling and kinematic analysis of the crank-and-link mechanism
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 551-562
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a18/
%G ru
%F MBB_2018_13_2_a18
Yuliya Tolmacheva; Anna Chmatkova; Tyuen Vyu Din; Valentina Kuzlyakina. Functioning of the maxillary apparatus of fish: modeling and kinematic analysis of the crank-and-link mechanism. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 551-562. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a18/

[1] J. W. Osse, “Functional morphology of the head of the perch (Perca fluviatilis): An electromyographic study”, Neth. J. Zool., 10 (1969), 289–392

[2] G. Ch. Anker, “Morphology and kinetics of the stickleback. Gasterosteus aculeatus”, Trans. Zool. Soc. (London), 32 (1974), 311–416 | DOI

[3] K. F. Liem, “Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids”, J. Morph., 158 (1978), 323–360 | DOI

[4] K. F. Liem, “Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes”, Amer. Zool., 20 (1980), 295–314 | DOI

[5] G. V. Lauder, “Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia”, J. Morph., 163 (1980), 283–317 | DOI

[6] G. V. Lauder, “Intraspecific functional repertoires in the feeding mechanism of the characoid fishes Lebiasina, Hoplias and Chalceus”, Copeia, 1981, 154–168 | DOI

[7] M. W. Westneat, “Feeding mechanics of teleost fishes (Labridae: Perciformes): A test of four-bar linkage models”, J. Morph., 205 (1990), 269–295 | DOI

[8] M. W. Westneat, “A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes”, J. Theoretical Biology, 223 (2003), 269–281 | DOI | MR

[9] M. W. Westneat, “Evolution of levers and linkages in the feeding mechanisms of fishes”, Intergrative and Comparative Biology, 44 (2004), 378–389 | DOI

[10] R. B. Martin, N. A. Burr, Sharkey Skeletal Tissue Mechanics, Springer-Verlag, New York, 1998, 392 pp. | DOI

[11] E. Y. Symanovskaya, M. Ph. Bolotova, Y. I. Nyashin, “Mechanical pressure as generator of grouth, development and formation of the dentofacial system”, Russian Journal of Biomechanics, 3 (2001), 3–11 | DOI

[12] M. J. Fagan, S. Julian, D. J. Siddall, A. Mohsen, “Patient-specific spine models - Part 1: finite element analysis of the lumbar intervertebral disc - a material sensitivity study”, Proc. IME H. J. Eng. Med., 216 (2002), 299–314 | DOI

[13] N. K. Curtis, M. J. Kupczik, D. Fagan, “Finite element modelling of the cat skull”, Journal of Morphology, 268 (2007), 1053

[14] K. Kupczik, “Virtual biomechanics: basic concepts and technical aspects of finite element analysis in vertebrate morphology”, Journal of Anthropological Sciences, 86 (2008), 193–198

[15] K. Kupczik, “Finite element analysis of craniofacial morphology in primates”, Bulletin der Schweizerischen Gesellschaft fur Anthropologie, 14 (2009), 40–48

[16] I. Werneburg, St. Hertwig, “Head Morphology of the Ricefish, Oryzias latipes (Teleostei: Beloniformes)”, Journal of Morphology, 270 (2009), 1095–1106 | DOI

[17] P. O'Higgins, L. Fitton, R. Phillips, J. F. Shi, J. Liu, F. Groening, S. N. Cobb, M. J. Fagan, “Virtual functional morphology: novel approaches to the study of craniofacial form and function”, Evolutionary Biology, 2009 | DOI

[18] C. Hulsey, F. J. Garcia de Leon, “Cichlid jaw mechanics: linking morphology to feeding specialization”, Funct. Ecol., 19 (2005), 487–494 | DOI

[19] Yu. P. Tolmacheva, V. P. Pachkov, A. A. Pyhalov, “Creation 3d Solid-State Model of The Maxillary Device of Fishes”, International journal of applied and fundamental research, 8 (2012), 14–16

[20] Yu. P. Tolmacheva, E. A. Dolid, S. Yu. Petukhov, V. P. Pashkov, A. A. Pykhalov, “3D-modelirovanie i animatsiya vistseralnogo skeleta ryb: testirovanie sistemy chetyrekhzvennykh mekhanizmov”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 513–519 | DOI

[21] Yu. P. Tolmacheva, A. V. Shmatkova, V. V. Kuzlyakina, “Vizualizatsiya i testirovanie dvizheniya kostei chelyustnogo apparata ryb na osnove obobschennykh strukturnykh modulei”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 73–82 | DOI

[22] W. N. Dobben, “Uber der Kiefermechanismus der Knochenfishe”, Archiv neerland. Zoolog., 50 (1935), 1–72

[23] V. A. Zinovev, Kurs teorii mekhanizmov i mashin, Nauka, M., 1972, 384 pp.

[24] Yu. P. Tolmacheva, “Stroenie rotovogo i glotochnogo apparatov trekh vidov baikalskikh Cottoidei v svyazi ikh pitaniem”, Vopr. ikhtiologii, 50:1 (2010), 69–76 | DOI

[25] Yu. P. Tolmacheva, “Sravnitelnaya kharakteristika pitaniya trekh vidov baikalskikh Cottoidei v litorali Yuzhnogo Baikala”, Vopr. ikhtiologii, 48:4 (2008), 501–506 | DOI

[26] V. N. Mikheev, “Razmery potreblyaemykh zhertv i izbiratelnost pitaniya u molodi ryb”, Vopr. ikhtiologii, 24:2 (1984), 243–252

[27] W. K. Gregory, “Fish skulls. A study of the evolution of natural mechanism”, Trans. Amer. Phil. Soc., 23 (1933), 75–481 | DOI

[28] W. A. Gosline, “Comments on the classification of the percoid fishes”, Pacif. Sci., 4 (1966), 409–418

[29] O. O'Kamura, Stadies of the Macrouroid fishes of Japan. Morfology, ecology and philogeny, Rept. U. S. Mar. Biol. Stat., 1970, 32 pp. | Zbl

[30] O. S. Voskoboinikova, “Evolyutsionnye preobrazovaniya vistseralnogo skeleta i voprosy filogenii nototenievidnykh ryb (Nototheniidae)”, Tr. Zool. in-ta AN SSSR, 153 (1986), 46–66