The peculiarities of charge motion in the molecular polynucleotide chains of finite length. The rapid formation of a moving polaron state
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 534-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical experiments which demonstrate the possibility of charge transfer in a homogeneous G/C DNA chain in the absence of an electric field have been carried out. As a model, which describes the dynamics of a DNA molecule, was considered the nonlinear Peyrard–Bishop–Dauxois–Holstein model. It is commonly supposed that the main electric current carrier in homogeneous synthetic polynucleotide chains is the polaron. We have previously studied the peculiarities of polaron motion in molecular polynucleotide chains of finite length. It was shown that a polaron placed at the initial moment of time not in the center of the chain acquires the ability to move in the absence of an electric field and in the absence of any additional excitations in the chain. The numerical experiments which demonstrate the possibility of polaron charge transfer in a homogeneous finite unclosed G/C DNA chain due to the interaction with localized excitations have been carried out in the absence of an electric field. In this study, at the initial moment of time, a polaron is not added to the chain, but a charge localized in the region of a certain number of neighboring sites displaced from the equilibrium positions. The motion of the charge in the chain is caused by choice of these specified initial conditions, which ensure the rapid formation of the polaron state and, as a consequence, charge transfer along the chain. For the assignment of the external nonlinear excitations, we used nonzero values of the displacements of particles and/or their velocities at the initial instant of time. Non-zero values of chain sites velocities at the initial time were used to stimulate the motion of the charge. It is shown that for the rapid formation of the polaron state, the initial conditions must correspond to the parameters of the polaron, which is formed in the chain under the chosen parameters. It is shown that, depending on the parameters of the chain and on the parameters of the selected initial conditions, the charge can be transferred along the chain over long distances.
@article{MBB_2018_13_2_a17,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {The peculiarities of charge motion in the molecular polynucleotide chains of finite length. {The} rapid formation of a moving polaron state},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {534--550},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a17/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - The peculiarities of charge motion in the molecular polynucleotide chains of finite length. The rapid formation of a moving polaron state
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 534
EP  - 550
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a17/
LA  - ru
ID  - MBB_2018_13_2_a17
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T The peculiarities of charge motion in the molecular polynucleotide chains of finite length. The rapid formation of a moving polaron state
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 534-550
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a17/
%G ru
%F MBB_2018_13_2_a17
A. N. Korshounova; V. D. Lakhno. The peculiarities of charge motion in the molecular polynucleotide chains of finite length. The rapid formation of a moving polaron state. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 534-550. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a17/

[1] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 | DOI

[2] A. Offenhausser, R. Rinaldi (eds.), Nanobioelectronics - for Electronics, Biology and Medicine, Springer, New York, 2009

[3] R. G. Eudres, D. L. Cox, R. R. P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76 (2004), 195–214 | DOI

[4] M. Taniguchi, T. Kawai, “DNA electronics”, Physica E, 33 (2006), 1–12 | DOI

[5] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 | DOI

[6] M. W. Shinwari, M. J. Deen, E. B. Starikov, G. Cuniberti, “Electrical Conductance in Biological Molecules”, Advanced Functional Materials, 20:12 (2010), 1865–1883 | DOI

[7] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 553–664 | DOI | MR

[8] M. Peyrard, S. Cuesta-Lopez, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 | DOI | MR

[9] E. Zamora-Sillero, A. V. Shapovalov, F. J. Esteban, “Formation control and dynamics of $N$ localized structures in the Peyrard-Bishop model”, Phys. Rev. E, 76 (2007), 066603 | DOI | MR

[10] E. B. Starikov, “Electron-phonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI

[11] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “ac conductivity in a DNA charge transport model”, Phys. Rev. E., 72 (2005), 021912 | DOI

[12] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI

[13] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chemical Physics Letters, 513 (2011), 276–279 | DOI

[14] D. Hennig, E. B. Starikov, J. F.R. Archilla, F. Palmero, “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227 | DOI

[15] E. B. Starikov, J. P. Lewis, O. F. Sankey, “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 | DOI | Zbl

[16] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 | DOI

[17] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147 | DOI

[18] J. A. Berashevich, A. D. Bookatz, T. Chakraborty, “The electric field effect and conduction in the Peyrard-Bishop-Holstein model”, J. Phys.: Condens. Matter., 20 (2008), 035207 | DOI

[19] E. Diaz, R. P. A. Dominguez-Adame, F. Lima, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI

[20] S. V. Rakhmanova, E. M. Conwell, “Polaron Motion in DNA”, J. Phys. Chem. B, 105 (2001), 2056 | DOI

[21] V. D. Lakhno, A. P. Chetverikov, “Vozbuzhdenie babblov i brizerov v DNK i ikh vzaimodeistvie s nositelyami zaryada”, Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 4–19 | DOI | MR

[22] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, A. S. Shigaev, M. G. Velarde, “On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field - Mechanical control of electrons”, Eur. Phys. J. B, 89 (2016), 101 | DOI

[23] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133 | DOI

[24] E. M. Conwell, Rakhmanova S. V., “Polarons in DNA”, Proc. Natl. Acad. Sci., 2000, no. 97, 4556 | DOI

[25] N. S. Fialko, V. D. Lakhno, “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108 | DOI

[26] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Math. Biol. Bioinf., 5 (2010), 1–29 | DOI

[27] A. N. Korshunova, V. D. Lakhno, “Osobennosti dvizheniya polyarona v molekulyarnykh polinukleotidnykh tsepochkakh konechnoi dliny”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 141–158 | DOI

[28] A. N. Korshunova, V. D. Lakhno, “Osobennosti dvizheniya polyarona v molekulyarnykh polinukleotidnykh tsepochkakh konechnoi dliny pri nalichii v tsepochke lokalizovannykh vozbuzhdenii”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 204–223 | DOI

[29] T. Dauxois, M. Peyrard, A. R. Bishop, “Dynamics and thermodynamics of a nonlinear model for DNA denaturation”, Phys. Rev. E, 47 (1993), 684 | DOI | MR

[30] M. Peyrard, A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA denaturation”, Phys. Rev. Lett., 62 (1989), 2755–2758 | DOI

[31] M. Peyrard, Using DNA to probe nonlinear localized excitations?, Europhys. Lett., 44 (1998), 271–277 | DOI

[32] C. H. Choi, G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, A. Usheva, “DNA dynamically directs its own transcription initiation”, Nucleic Acids Res., 32:4 (2004), 1584–1590 | DOI

[33] T. Holstein, “Studies of polaron motion:The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 | DOI | Zbl

[34] T. Holstein, “Studies of polaron motion: The “small” polaron”, Annals of Phys., 8 (1959), 343–389 | DOI | Zbl