The role of geterogeneity in synchronization of spiking neural networks
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 490-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

The diversity and heterogeneity of neurons and synapses is an important factor in the functioning of the brain. In our work, we investigated the role of heterogeneity of neural populations in the occurrence of synchronous modes in a network connected by exciting links in the presence of an external exciting input. Using Monte-Carlo modeling and the semi-analytical modeling the distribution of the refractory density of neuron integrators and Hodgkin – Huxley neurons, we showed that there is a range of parameters for the stimulating current and the strength of connections in the population where the effects of neuronal heterogeneity on the threshold or on the stimulating current are opposite. For large values of synaptic weights and subthreshold values of the exciting current, heterogeneity contributes to the emergence of a synchronous mode in the neural network, while at the same time reducing the coupling strength and increasing the exciting current. The heterogeneity reduces the tendency of the neural network to synchronize. The results obtained make it possible to reconcile the known data on the effects of heterogeneity in the regulation of the synchronous regimes arising in the neural ensembles of the brain.
@article{MBB_2018_13_2_a16,
     author = {I. E. Mysin and A. V. Chizhov},
     title = {The role of geterogeneity in synchronization of spiking neural networks},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {490--506},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a16/}
}
TY  - JOUR
AU  - I. E. Mysin
AU  - A. V. Chizhov
TI  - The role of geterogeneity in synchronization of spiking neural networks
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 490
EP  - 506
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a16/
LA  - ru
ID  - MBB_2018_13_2_a16
ER  - 
%0 Journal Article
%A I. E. Mysin
%A A. V. Chizhov
%T The role of geterogeneity in synchronization of spiking neural networks
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 490-506
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a16/
%G ru
%F MBB_2018_13_2_a16
I. E. Mysin; A. V. Chizhov. The role of geterogeneity in synchronization of spiking neural networks. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 490-506. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a16/

[1] X. J. Wang, “Neurophysiological and computational principles of cortical rhythms in cognition”, Physiol. Rev., 90:3 (2010), 1195–1268 | DOI

[2] L. L. Colgin, “Rhythms of the hippocampal network”, Nat. Rev. Neurosci., 17:4 (2016), 239–249 | DOI

[3] G. Buzsaki, “Theta oscillations in the hippocampus”, Neuron, 33:3 (2002), 325–340 | DOI

[4] G. Buzsaki, “Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning”, Hippocampus, 25:10 (2015), 1073–1188 | DOI

[5] O. S. Vinogradova, “Expression, control, and probable functional significance of the neuronal theta-rhythm”, Prog. Neurobiol., 45:6 (1995), 523–583 | DOI

[6] G. N. Borisyuk, R. M. Borisyuk, Ya. B. Kazanovich, G. R. Ivanitskii, “Modeli dinamiki neironnoi aktivnosti pri obrabotke informatsii mozgom - itogi “desyatiletiya””, Uspekhi fizicheskikh nauk, 172:10 (2002), 1189–1214 | DOI

[7] J. J. Hopfield, A. V. Herz, “Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons”, Proc. Natl. Acad. Sci. USA, 92:15 (1995), 6655–6662 | DOI

[8] R. Borisyuk, “Oscillatory activity in the neural networks of spiking elements”, BioSystems, 67:1–3 (2002), 3–16 | DOI

[9] K. Mizuseki, G. Buzsaki, “Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex”, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369:1635 (2014), 20120530 | DOI

[10] A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, K. D. Harris, “The asynchronous state in cortical circuits”, Science, 327:5965 (2010), 587–590 | DOI

[11] A. K. Engel, A. K. Kreiter, P. Konig, W. Singer, “Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat”, Proc. Natl. Acad. Sci. USA, 88:14 (1991), 6048–6052 | DOI

[12] J. G. Heys, K. V. Rangarajan, D. A. Dombeck, “The functional micro-organization of grid cells revealed by cellular-resolution imaging”, Neuron, 84:5 (2014), 1079–1090 | DOI

[13] A. Cymerblit-Sabba, Y. Schiller, “Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo”, J. Neurophysiol., 107:6 (2012), 1718–1730 | DOI

[14] W. Truccolo, O. J. Ahmed, M. T. Harrison, E. N. Eskandar, G. R. Cosgrove, J. R. Madsen, A. S. Blum, N. S. Potter, L. R. Hochberg, S. S. Cash, “Neuronal ensemble synchrony during human focal seizures”, J. Neurosci., 34:30 (2014), 9927–9944 | DOI

[15] M. R. Bower, M. Stead, R. S. Bower, M. T. Kucewicz, V. Sulc, J. Cimbalnik, B. H. Brinkmann, V. M. Vasoli, E. K. St Louis, F. B. Meyer, W. R. Marsh, G. A. Worrell, “Evidence for consolidation of neuronal assemblies after seizures in humans”, J. Neurosci., 35:3 (2015), 999–1010 | DOI

[16] D. A. Wagenaar, J. Pine, S. M. Potter, “An extremely rich repertoire of bursting patterns during the development of cortical cultures”, BMC Neurosci., 7 (2006), 11 | DOI

[17] D. Ito, H. Tamate, M. Nagayama, T. Uchida, S. N. Kudoh, K. Gohara, “Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays”, Neuroscience, 171:1 (2010), 50–61 | DOI

[18] J. F. Mejias, A. Longtin, “Optimal heterogeneity for coding in spiking neural networks”, Phys. Rev. Lett., 108:22 (2012), 228102 | DOI

[19] J. F. Mejias, A. Longtin, “Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks”, Front. Comput. Neurosci., 8 (2014), 107 | DOI

[20] A. V. Chizhov, “Conductance-based refractory density approach: comparison with experimental data and generalization to lognormal distribution of input current”, Biol. Cybern., 111:5–6 (2017), 353–364 | DOI | MR | Zbl

[21] A. V. Chizhov, L. J. Graham, “Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method”, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77:1-1 (2008), 011910 | DOI

[22] A. V. Chizhov, L. J. Graham, “Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons”, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 75:1-1 (2007), 011924 | DOI | MR

[23] L. J. Borg-Graham, “Interpretations of data and mechanisms for hippocampal pyramidal cell models”, Cerebral cortex, 13 (1998), 19 | DOI

[24] P. J. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D. Nikolic, W. Singer, “Neural synchrony in cortical networks: history, concept and current status”, Front. Integr. Neurosci., 3 (2009), 17 | DOI

[25] P. Kudela, P. J. Franaszczuk, G. K. Bergey, “Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior”, Biol. Cybern., 88:4 (2003), 276–285 | DOI | Zbl

[26] S. Karnup, A. Stelzer, “Seizure-like activity in the disinhibited CA1 minislice of adult guinea-pigs”, J. Physiol. (Lond.)., 532:3 (2001), 713–730 | DOI

[27] A. V. Chizhov, D. V. Amakhin, A. V. Zaitsev, “AMPAR-oposredovannye interiktalnye razryady v neironakh entorinalnoi kory: eksperiment i model”, Doklady Akademii Nauk, 479:1 (2018), 103–106

[28] K. Kwong, M. J. Carr, “Voltage-gated sodium channels”, Curr. Opin. Pharmacol., 22 (2015), 131–139 | DOI

[29] M. Pospischil, M. Toledo-Rodriguez, C. Monier, Z. Piwkowska, T. Bal, Y. Fregnac, H. Markram, A. Destexhe, “Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons”, Biol. Cybern., 99:4–5 (2008), 427–441 | DOI | MR | Zbl

[30] J. Yamada-Hanff, B. P. Bean, “Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation”, J. Neurosci., 33:38 (2013), 15011–15021 | DOI

[31] M. Jalili, “Spike phase synchronization in delayed-coupled neural networks: uniform vs. non-uniform transmission delay”, Chaos, 23:1 (2013), 013146 | DOI | MR | Zbl

[32] O. V. Maslennikov, V. I. Nekorkin, “Modular networks with delayed coupling: synchronization and frequency control”, Phys. Rev. E, 90:1 (2014), 12901 | DOI

[33] C. Ly, Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity, 39:3 (2015), 311–327 | MR | Zbl

[34] J. Lengler, F. Jug, A. Steger, “Reliable neuronal systems: the importance of heterogeneity”, PLoS ONE, 8:12 (2013), 80694 | DOI

[35] G. Buzsaki, E. I. Moser, “Memory, navigation and theta rhythm in the hippocampal-entorhinal system”, Nat. Neurosci., 16:2 (2013), 130–138 | DOI

[36] O. S. Vinogradova, “Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information”, Hippocampus, 11:5 (2001), 578–598 | DOI

[37] A. Chatzikonstantinou, “Epilepsy, the hippocampus”, Front. Neurol. Neurosci., 34 (2014), 121–142 | DOI

[38] J. Engel, “Introduction to temporal lobe epilepsy”, Epilepsy Res., 26:1 (1996), 141–150 | DOI

[39] A. Guekht, W. A. Hauser, L. Milchakova, Y. Churillin, A. Shpak, E. Gusev, “The epidemiology of epilepsy in the Russian Federation”, Epilepsy Res., 92:2–3 (2010), 209–218 | DOI

[40] M. B. Johnson, P. P. Wang, K. D. Atabay, E. A. Murphy, R. N. Doan, J. L. Hecht, C. A. Walsh, “Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex”, Nat. Neurosci., 18:5 (2015), 637–646 | DOI

[41] S. Knudstrup, M. Zochowski, V. Booth, “Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity”, Eur. J. Neurosci., 43:10 (2016), 1321–1339 | DOI

[42] L. L. Colgin, “Theta-gamma coupling in the entorhinal-hippocampal system”, Curr. Opin. Neurobiol., 31 (2015), 45–50 | DOI

[43] L. L. Colgin, E. I. Moser, “Gamma oscillations in the hippocampus”, Physiology (Bethesda), 25:5 (2010), 319–329 | DOI

[44] F. E. Dudek, T. P. Sutula, “Epileptogenesis in the dentate gyrus: a critical perspective”, Prog. Brain Res., 163 (2007), 755–773 | DOI

[45] P. Mohapel, L. L. Armitage, T. H. Gilbert, D. K. Hannesson, G. C. Teskey, M. E. Corcoran, “Mossy fiber sprouting is dissociated from kindling of generalized seizures in the guinea-pig”, Neuroreport, 11:13 (2000), 2897–2901 | DOI

[46] C. Bonansco, M. Fuenzalida, “Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain”, Neural Plast., 2016 (2016), 8607038 | DOI

[47] J. W. Swann, J. M. Rho, How is homeostatic plasticity important in epilepsy?, Adv. Exp. Med. Biol., 813 (2014), 123–131 | DOI

[48] E. Isaeva, D. Isaev, G. L. Holmes, “Alteration of synaptic plasticity by neonatal seizures in rat somatosensory cortex”, Epilepsy Res., 106:1–2 (2013), 280–283 | DOI

[49] C. Sgobio, V. Ghiglieri, C. Costa, V. Bagetta, S. Siliquini, I. Barone, M. Di Filippo, F. Gardoni, E. D. Gundelfinger, M. Di Luca, B. Picconi, P. Calabresi, “Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment”, Biol. Psychiatry, 67:6 (2010), 567–574 | DOI