Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a14, author = {V. N. Govorukhin and A. D. Zagrebneva and V. V. Kartashev}, title = {A mathematical model of spatial transmission of vector-borne disease}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {437--453}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a14/} }
TY - JOUR AU - V. N. Govorukhin AU - A. D. Zagrebneva AU - V. V. Kartashev TI - A mathematical model of spatial transmission of vector-borne disease JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 437 EP - 453 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a14/ LA - ru ID - MBB_2018_13_2_a14 ER -
%0 Journal Article %A V. N. Govorukhin %A A. D. Zagrebneva %A V. V. Kartashev %T A mathematical model of spatial transmission of vector-borne disease %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 437-453 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a14/ %G ru %F MBB_2018_13_2_a14
V. N. Govorukhin; A. D. Zagrebneva; V. V. Kartashev. A mathematical model of spatial transmission of vector-borne disease. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 437-453. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a14/
[1] V. Kartashev, I. Batashova, S. Kartashov, A. Ermakov, A. Mironova, Y. Kuleshova, B. Ilyasov, I. Kolodiy, A. Klyuchnikov, E. Ryabikina, M. Babicheva, Y. Levchenko, R. Pavlova, N. Pantchev, R. Morchon, F. Simon, “Canine and human dirofilariosis in the Rostov Region (Southern Russia)”, Veterinary Medicine International, 2011 (2011), 685713 | DOI
[2] V. Kartashev, T. Tverdokhlebova, A. Korzan, A. Vedenkov, L. Simon, J. Gonzalez-Miguel, R. Morchon, M. Siles-Lucas, F. Simon, “Human subcutaneous/ocular dirofilariasis in the Russian Federation and Belarus, 1997-2013”, International Journal of Infectious Diseases, 33 (2015), 209–211 | DOI
[3] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical tools for understanding infectious disease dynamics, Princeton University Press, 2012, 502 pp. | MR
[4] J. B. Gutierrez, M. R. Galinski, S. Cantrell, E. O. Voit, “From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges”, Mathematical Biosciences, 270 (2015), 143–155 | DOI | MR | Zbl
[5] S. L. Robertson, K. A. Caillouet, “A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors”, Journal of Theoretical Biology, 399 (2016), 33–42 | DOI | MR | Zbl
[6] H. Gulbudak, V. L. Cannataro, N. Tuncer, M. Martcheva, “Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System”, Bulletin of Mathematical Biology, 79:2 (2017), 325–355 | DOI | MR | Zbl
[7] V. P. Sergiev, V. S. Orlov, B. V. Boev, S. N. Grinchenko, T. P. Sabgaida, “Matematicheskoe modelirovanie tropicheskoi malyarii”, Parazitologiya, 29:3 (1995), 159–166
[8] M. Lewis, J. Renclawowicz, P. van den Driessche, “Traveling Waves and Spread Rates for a West Nile Virus Model”, Bulletin of Mathematical Biology, 68 (2006), 3–23 | DOI | MR | Zbl
[9] N. Chitnis, J. M. Cushing, J. M. Hyman, “Bifurcation analysis of a mathematical model for malaria transmission”, SIAM Journal on Applied Mathematics, 67:1 (2006), 24–45 | DOI | MR | Zbl
[10] C. Burli, H. Harbrecht, P. Odermatt, S. Sayasone, N. Chitnis, “Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini”, Journal of Theoretical Biology, 439 (2018), 181–194 | DOI | MR | Zbl
[11] G. A. Ngwa, W. S. Shu, “A mathematical model for endemic malaria with variable human and mosquito populations”, Mathematical and Computer Modelling, 32:7–8 (2000), 747–763 | DOI | MR | Zbl
[12] K. Okuneye, A. B. Gumel, “Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics”, Mathematical Biosciences, 287 (2017), 72–92 | DOI | MR | Zbl
[13] M. J. Wonham, T. De-Camino-Beck, M. A. Lewis, “An epidemiological model for West Nile virus: Invasion analysis and control applications”, Proceedings of the Royal Society B: Biological Sciences, 271:1538 (2004), 501–507 | DOI
[14] Y. C. Shyu, R. N. Chien, F. B. Wang, “Global dynamics of a West Nile virus model in a spatially variable habitat”, Nonlinear Analysis: Real World Applications, 41 (2018), 313–333 | DOI | MR | Zbl
[15] J. Mohammed-Awel, R. Zhao, E. Numfor, S. Lenhart, “Management strategies in a malaria model combining human and transmission-blocking vaccines”, Discrete and Continuous Dynamical Systems - Series B, 22:3 (2017), 977–1000 | DOI | MR | Zbl
[16] Sh. M. Akbaev, Parazitologiya i invazionnye bolezni zhivotnykh, Kolos, M., 2009, 776 pp.