Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a12, author = {T. Luzyanina and G. Bocharov}, title = {Markov chain {Monte} {Carlo} parameter estimation of the {ODE} compartmental cell growth model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {376--391}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a12/} }
TY - JOUR AU - T. Luzyanina AU - G. Bocharov TI - Markov chain Monte Carlo parameter estimation of the ODE compartmental cell growth model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 376 EP - 391 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a12/ LA - en ID - MBB_2018_13_2_a12 ER -
%0 Journal Article %A T. Luzyanina %A G. Bocharov %T Markov chain Monte Carlo parameter estimation of the ODE compartmental cell growth model %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 376-391 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a12/ %G en %F MBB_2018_13_2_a12
T. Luzyanina; G. Bocharov. Markov chain Monte Carlo parameter estimation of the ODE compartmental cell growth model. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 376-391. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a12/
[1] V. Muller, A. F. Maree, R. J. De Boer, “Small variations in multiple parameters account for wide variations in HIV-1 set-points: a novel modelling approach”, Proc. R. Soc. Lond. B, 268 (2001), 235–242 | DOI
[2] R. J. De Boer, A. S. Perelson, “Quantifying T lymphocyte turnover”, J. Theor. Biol., 327 (2013), 45–87 | DOI | MR | Zbl
[3] S. Hross, J. Hasenauer, “Analysis of CFSE time-series data using division-, age- and label-structured population models”, Bioinformatics, 32:15 (2016), 2321–2329 | DOI | MR
[4] Z. R. Kenz, H. T. Banks, R. C. Smith, “Comparison of frequentist and Bayesian confidence analysis methods on a viscoelastic stenosis model”, SIAM/ASA J. on Uncertainty Quantification, 1:1 (2013), 348–369 | DOI | MR | Zbl
[5] B. Ballnus, S. Hug, K. Hatz, L. Grlitz, J. Hasenauer, F. J. Theis, “Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems”, BMC Syst. Biol., 11:63 (2017), 1–18
[6] F. J. Samaniego, A comparison of the Bayesian and frequentist approaches to estimation, Springer Series in Statistics, Springer-Verlag, New York, 2010 | DOI | MR | Zbl
[7] T. Luzyanina, S. Mrusek, J. T. Edward, D. Roose, S. Ehl, G. Bocharov, “Computational analysis of CFSE proliferation assay”, J. of Math. Biology, 54:1 (2007), 57–89 | DOI | MR | Zbl
[8] D. J. Klinke, “An empirical Bayesian approach for model-based inference of cellular signaling networks”, BMC Bioinformatics, 10 (2009), 371–387 | DOI
[9] A. Solonen, P. Ollinaho, M. Laine, H. Haario, J. Tamminen, H. Jarvinen, “Efficient MCMC for climate model parameter estimation: Parallel adaptive chains and early rejection”, Bayesian Analysis, 7:3 (2012), 715–736 | DOI | MR | Zbl
[10] S. Hug, A. Raue, J. Hasenauer, U. Klingmuller, J. Timmer, F. J. Theis, “High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling”, Math. Bioscienses, 246 (2013), 293–304 | DOI | MR | Zbl
[11] H. Haario, M. Laine, A. Mira, E. Saksman, “DRAM: Efficient adaptive MCMC”, Stat. Comput., 16 (2006), 539–354 | DOI | MR
[12] Y. Bard, Nonlinear parameter estimation, Academic Press, New York, 1974 | MR | Zbl
[13] D. J. Venzon, S. H. Moolgavkar, “A method for computing profile-likelihood-based confidence intervals”, Appl. Statist., 37:1 (1988), 87–94 | DOI | MR
[14] B. Efron, R. Tibshirani, “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy”, Stat. Sci., 1:1 (1986), 54–77 | DOI | MR
[15] H. Haario, E. Saksman, J. Tamminen, “An adaptive Metropolis algorithm”, Bernoulli, 7:2 (2001), 223–242 | DOI | MR | Zbl
[16] M. P. Wand, M. C. Jones, Kernel smoothing, Chapman Hall, London, 1995 | MR | Zbl
[17] P. S. Brooks, G. O. Roberts, “Assessing convergence of Markov chain Monte Carlo algorithms”, Stat. Comput., 8 (1998), 319–335 | DOI