Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 348-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is focused on modeling of dynamics of nitrogenous compounds in microalgae cells. The model is based on the idea that all intracellular nitrogen can be considered as the sum of structural and reserve forms. The rate of nitrogen supply into the cell and the rate of its consumption for the synthesis of structural components are described in the form of linear splines and expressed through the ratio of reserve and structural forms. It is shown that species-specific parameters of the model are light-dependent values. Particular integrated solutions have been found for specific cases of nitrogen supply. The dynamics of all forms of intracellular nitrogen and nitrogen concentration in the medium follow the exponential law. The mathematical model for quantitative description of microalgae culture growth in the absence of nitrogen in the environment is proposed. The equations obtained using experimental data on the culture growth and nitrogen assimilation by cells of green microalgae Dunaliella salina and Scenedesmus obliquus have been verified. The proposed model allows to describe the dynamics of the concentration changes of structural, reserve and extracellular nitrogen in the cultivation of these species. For the exponential growth phase, the species-specific coefficients of the maximum specific rate of nitrogen supply into the cell and the maximum specific rate of the synthesis of structural components, which for D. salina amounted to: 0.42 day$^{-1}$ and 0.55 day$^{-1}$; for S. obliquus — 1.37 day$^{-1}$ and 1.25 day$^{-1}$ respectively have been determined. Differences of these parameters for two types of microalgae are due to different light conditions of their cultivation.
@article{MBB_2018_13_2_a10,
     author = {R. P. Trenkenshu and A. S. Lelekov},
     title = {Modeling of dynamics of nitrogenous compounds in microalgae cells. {1.~Batch} culture},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {348--359},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/}
}
TY  - JOUR
AU  - R. P. Trenkenshu
AU  - A. S. Lelekov
TI  - Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 348
EP  - 359
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/
LA  - ru
ID  - MBB_2018_13_2_a10
ER  - 
%0 Journal Article
%A R. P. Trenkenshu
%A A. S. Lelekov
%T Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 348-359
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/
%G ru
%F MBB_2018_13_2_a10
R. P. Trenkenshu; A. S. Lelekov. Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 348-359. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/

[1] M. P. Sanchez-Saavedra, F. Y. Castro-Ochoa, V. M. Nava-Ruiz, D. A. Ruiz-Guereca, A. L. Villagomez-Aranda, F. Siqueiros-Vargas, C. A. Molina-Cardenas, “Effects of nitrogen source and irradiance on Porphyridium cruentum”, J. Appl. Phycol., 2017 | DOI

[2] C. E. Silva, E. Sforza, A. Bertucco, “Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus”, J. Appl. Phycol., 2017

[3] S. Ho, C. Chen, J. Chang, “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N”, Bioresource Technology, 113 (2012), 244–252 | DOI

[4] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances”, J. Plant., 54:4 (2008), 621–639 | DOI

[5] M. Podevin, D. Francisci, S. L. Holdt, I. Angelidaki, “Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method”, J. Appl. Phycol., 27 (2015), 1415–1423 | DOI

[6] C. M. Gatenby, D. M. Occurt, D. A. Kreeger, B. C. Parker, V. A. Jones, R. J. Neves, “Biochemical composition of three algal species proposed as food for captive freshwater mussels”, J. Appl. Phycol., 15:1 (2003), 1–11 | DOI | MR

[7] A. M. J. Kliphuis, A. J. Klok, D. E. Martens, P. P. Lamers, M. Janssen, R. H. Wijffels, “Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance”, J. Appl. Phycol., 24 (2012), 253–266 | DOI

[8] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI

[9] I. N. Gudvilovich, A. B. Borovkov, “Produktivnost mikrovodorosli Dunaliella salina Teod pri razlichnykh sposobakh vneseniya uglekislogo gaza v kulturu”, Morskoi biologicheskii zhurnal, 2:2 (2017), 34–40 | DOI

[10] C. Baroukh, R. Munoz-Tamayo, J. Steyer, O. Bernard, “DRUM: A new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae”, PLoS One, 2014 | DOI

[11] A. A. Shastri, J. A. Morgan, “Flux balance analysis of photoautotrophic metabolism”, Biotechnol. Prog., 21 (2005), 1617–1626 | DOI

[12] I. G. Minkevich, “Matematicheskie problemy organizatsii metabolicheskikh putei iz biokhimicheskikh reaktsii”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 406–425 | DOI

[13] A. A. Ivlev, “Kolebatelnaya priroda uglerodnogo metabolizma v fotosinteziruyuschei kletke po dannym izotopnogo sostava ugleroda”, Uspekhi sovremennoi biologii, 131:2 (2011), 178–192

[14] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43 (2003), 225–266

[15] A. A. Krasnovsky, “Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies”, Membr. Cell Biol., 12:5 (1998), 665–690

[16] R. P. Trenkenshu, A. S. Lelekov, “Model transformatsii form azotistykh soedinenii kletkami mikrovodoroslei”, Voprosy sovremennoi algologii, 2018, no. 1(16) (data obrascheniya: 24.07.2018) http://algology.ru/1247

[17] M. R. Droop, “Some thoughts on nutrient limitation in algae”, J. Phycol., 9 (1973), 264–272

[18] R. P. Trenkenshu, Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.

[19] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, OOO “Konstanta-Print”, Sevastopol, 2017, 152 pp. | DOI

[20] F. F. Blackman, “Optima, limiting factors”, Ann. Bot. Lond., 1905, no. 19, 281–295 | DOI

[21] O. Perez-Garcia, F. Escalante, L. de-Bashan, Y. Bashan, “Heterotrophic cultures of microalgae: Metabolism and potential products”, Water Research, 45:1 (2011), 11–36 | DOI

[22] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci., 6:899 (2015) | DOI

[23] A. S. Lelekov, S. Yu. Gorbunova, A. B. Borovkov, “Dinamika azota i fosfora v srede pri intensivnom kultivirovanii mikrovodorosli Dunaliella salina”, Ekologiya morya, 74 (2007), 21–24

[24] A. S. Lelekov, I. N. Gudvilovich, “Produktsionnye kharakteristiki rosta i biosinteza kvazinepreryvnoi kultury zelenoi mikrovodorosli Dunaliella salina Teod”, Ekologiya morya, 2010, Spets. vyp. 80: Biotekhnologiya vodoroslei, 59–66