Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a10, author = {R. P. Trenkenshu and A. S. Lelekov}, title = {Modeling of dynamics of nitrogenous compounds in microalgae cells. {1.~Batch} culture}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {348--359}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/} }
TY - JOUR AU - R. P. Trenkenshu AU - A. S. Lelekov TI - Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 348 EP - 359 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/ LA - ru ID - MBB_2018_13_2_a10 ER -
%0 Journal Article %A R. P. Trenkenshu %A A. S. Lelekov %T Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 348-359 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/ %G ru %F MBB_2018_13_2_a10
R. P. Trenkenshu; A. S. Lelekov. Modeling of dynamics of nitrogenous compounds in microalgae cells. 1.~Batch culture. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 348-359. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a10/
[1] M. P. Sanchez-Saavedra, F. Y. Castro-Ochoa, V. M. Nava-Ruiz, D. A. Ruiz-Guereca, A. L. Villagomez-Aranda, F. Siqueiros-Vargas, C. A. Molina-Cardenas, “Effects of nitrogen source and irradiance on Porphyridium cruentum”, J. Appl. Phycol., 2017 | DOI
[2] C. E. Silva, E. Sforza, A. Bertucco, “Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus”, J. Appl. Phycol., 2017
[3] S. Ho, C. Chen, J. Chang, “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N”, Bioresource Technology, 113 (2012), 244–252 | DOI
[4] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances”, J. Plant., 54:4 (2008), 621–639 | DOI
[5] M. Podevin, D. Francisci, S. L. Holdt, I. Angelidaki, “Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method”, J. Appl. Phycol., 27 (2015), 1415–1423 | DOI
[6] C. M. Gatenby, D. M. Occurt, D. A. Kreeger, B. C. Parker, V. A. Jones, R. J. Neves, “Biochemical composition of three algal species proposed as food for captive freshwater mussels”, J. Appl. Phycol., 15:1 (2003), 1–11 | DOI | MR
[7] A. M. J. Kliphuis, A. J. Klok, D. E. Martens, P. P. Lamers, M. Janssen, R. H. Wijffels, “Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance”, J. Appl. Phycol., 24 (2012), 253–266 | DOI
[8] H. L. Macintyre, T. M. Kana, T. Anning, R. J. Geider, “Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria”, J. Phycol., 38 (2002), 17–38 | DOI
[9] I. N. Gudvilovich, A. B. Borovkov, “Produktivnost mikrovodorosli Dunaliella salina Teod pri razlichnykh sposobakh vneseniya uglekislogo gaza v kulturu”, Morskoi biologicheskii zhurnal, 2:2 (2017), 34–40 | DOI
[10] C. Baroukh, R. Munoz-Tamayo, J. Steyer, O. Bernard, “DRUM: A new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae”, PLoS One, 2014 | DOI
[11] A. A. Shastri, J. A. Morgan, “Flux balance analysis of photoautotrophic metabolism”, Biotechnol. Prog., 21 (2005), 1617–1626 | DOI
[12] I. G. Minkevich, “Matematicheskie problemy organizatsii metabolicheskikh putei iz biokhimicheskikh reaktsii”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 406–425 | DOI
[13] A. A. Ivlev, “Kolebatelnaya priroda uglerodnogo metabolizma v fotosinteziruyuschei kletke po dannym izotopnogo sostava ugleroda”, Uspekhi sovremennoi biologii, 131:2 (2011), 178–192
[14] A. B. Rubin, T. E. Krendeleva, “Regulyatsiya pervichnykh protsessov fotosinteza”, Uspekhi biologicheskoi khimii, 43 (2003), 225–266
[15] A. A. Krasnovsky, “Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies”, Membr. Cell Biol., 12:5 (1998), 665–690
[16] R. P. Trenkenshu, A. S. Lelekov, “Model transformatsii form azotistykh soedinenii kletkami mikrovodoroslei”, Voprosy sovremennoi algologii, 2018, no. 1(16) (data obrascheniya: 24.07.2018) http://algology.ru/1247
[17] M. R. Droop, “Some thoughts on nutrient limitation in algae”, J. Phycol., 9 (1973), 264–272
[18] R. P. Trenkenshu, Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem, EKOSI-Gidrofizika, Sevastopol, 2005, 89 pp.
[19] R. P. Trenkenshu, A. S. Lelekov, Modelirovanie rosta mikrovodoroslei v kulture, OOO “Konstanta-Print”, Sevastopol, 2017, 152 pp. | DOI
[20] F. F. Blackman, “Optima, limiting factors”, Ann. Bot. Lond., 1905, no. 19, 281–295 | DOI
[21] O. Perez-Garcia, F. Escalante, L. de-Bashan, Y. Bashan, “Heterotrophic cultures of microalgae: Metabolism and potential products”, Water Research, 45:1 (2011), 11–36 | DOI
[22] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, “Understanding nitrate assimilation and its regulation in microalgae”, Front. Plant. Sci., 6:899 (2015) | DOI
[23] A. S. Lelekov, S. Yu. Gorbunova, A. B. Borovkov, “Dinamika azota i fosfora v srede pri intensivnom kultivirovanii mikrovodorosli Dunaliella salina”, Ekologiya morya, 74 (2007), 21–24
[24] A. S. Lelekov, I. N. Gudvilovich, “Produktsionnye kharakteristiki rosta i biosinteza kvazinepreryvnoi kultury zelenoi mikrovodorosli Dunaliella salina Teod”, Ekologiya morya, 2010, Spets. vyp. 80: Biotekhnologiya vodoroslei, 59–66