Reconstruction of the human heart functional structure based on a few-channel magnetocardiogram
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 392-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new method of magnetocardiography data analysis is proposed. The method is based on the Fourier transform of prolonged time series and on the massive inverse problem solution for all spectral components. Magnetocardiograms (MCG) were registered in the plane above the subject’s chest in the nodes of the “rectangular” (6$\times$6) grid with the step 40 mm at usual laboratory conditions without any additional magnetic shielding. The 9-channel MCG-system “MAG-SCAN-09” with dc-SQUID-based axial second order gradiometers was used. The MCG-recording was performed in four positions of investigated subjects under the instrument to get all 36 MCGs. For each of four positions of the MCG-recording the partial functional tomogram was calculated, which is the spatial distribution of elementary magnetic dipoles, observed in this position. The complete functional tomogram of the thorax was obtained by the summation of four partial functional tomograms, containing the data about the same object, observed from various positions. Filtering and contrasting of the complete functional tomogram made it possible to extract the 3D-object, representing the functional structure of the heart. The method was used for five subjects and provided consistent results. It is possible to use this method in cardiography, because the functional tomogram contains all measured information about individual heart.
@article{MBB_2018_13_2_a1,
     author = {M. N. Ustinin and Yu. V. Maslennikov and S. D. Rykunov and V. A. Krymov},
     title = {Reconstruction of the human heart functional structure based on a few-channel magnetocardiogram},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {392--401},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a1/}
}
TY  - JOUR
AU  - M. N. Ustinin
AU  - Yu. V. Maslennikov
AU  - S. D. Rykunov
AU  - V. A. Krymov
TI  - Reconstruction of the human heart functional structure based on a few-channel magnetocardiogram
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 392
EP  - 401
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a1/
LA  - ru
ID  - MBB_2018_13_2_a1
ER  - 
%0 Journal Article
%A M. N. Ustinin
%A Yu. V. Maslennikov
%A S. D. Rykunov
%A V. A. Krymov
%T Reconstruction of the human heart functional structure based on a few-channel magnetocardiogram
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 392-401
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a1/
%G ru
%F MBB_2018_13_2_a1
M. N. Ustinin; Yu. V. Maslennikov; S. D. Rykunov; V. A. Krymov. Reconstruction of the human heart functional structure based on a few-channel magnetocardiogram. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 392-401. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a1/

[1] W. Andra, H. Nowak, Magnetism in medicine, a handbook, Wiley-VCH, 2007, 630 pp.

[2] D. Cohen, E. A. Edelsack, J. E. Zimmerman, “Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer”, Appl. Phys. Letters, 16 (1970), 278–280 | DOI

[3] S. Schneider, E. Hoenig, H. Reichenberger, K. Abraham-Fuchs, W. Moshage, A. Oppelt, H. Stefan, A. Weikl, A. Wirth, “Multichannel biomagnetic system for study of electrical activity of the brain and heart”, Radiology, 176 (1990), 825 | DOI

[4] M. Saarinen, P. Siltanen, P. J. Karp, T. E. Katila, “The normal magnetocardiogram. I: Morphology”, Ann. Clin. Res., 10:21, Suppl. (1978), 1–43

[5] M. Saarinen, P. J. Karp, T. E. Katila, P. Siltanen, “The magnetocardiogram in cardiac disorders”, Cardiovasc. Res., 8 (1974), 820–834 | DOI

[6] D. Brisinda, A. M. Meloni, R. Fenici, “First 36-channel magnetocardiographic study of CAD patients in an unshielded laboratory for interventional and intensive cardiac care”, Lecture Notes in Computer Science, 2674, 2003, 122–131 | DOI

[7] W. Moshage, S. Achenbach, Gohl, K., A. Weikl, K. Bachmann, P. Wegener, S. Schneider, W. Harer, “Biomagnetic localization of ventricular arrhythmias”, Radiology, 187 (1991), 685–692 | DOI

[8] W. Moshage, S. Achenbach, K. Gohl, K. Bachmann, “Evaluation of the non-invasive localization accuracy of cardiac arrhythmias attainable by multichannel magnetocardiography (MCG)”, Int. J. Cardiac Imaging, 12 (1996), 47–59 | DOI

[9] P. L. Agren, H. Goranson, H. Jonsson, L. Bergfeldt, “Magnetocardiographic and magnetic resonance imaging for noninvasive localization of ventricular arrhythmia origin in a model of nonischemic cardiomyopathy”, Pace, 25:2 (2002), 161–166 | DOI

[10] Y. Kimura, H. Takaki, Y. Y. Inoue, Y. Oguchi, T. Nagayama, T. Nakashima, S. Kawakami, S. Nagase, T. Noda, T. Aiba et al., “Isolated late activation detected by magnetocardiography predicts future lethal ventricular arrhythmic events in patients with arrhythmogenic right ventricular cardiomyopathy”, Circulation Journal, 82 (2018), 78–86 | DOI

[11] K. Yoshida, K. Ogata, T. Inaba, Y. Nakazawa, Y. Ito, I. Yamaguchi, A. Kandori, K. Aonuma, “Ability of magnetocardiography to detect regional dominant frequencies of atrial fibrillation”, Journal of Arrhythmia, 31 (2015), 345–351 | DOI

[12] Y. C. Chang, C. C. Wu, C. H. Lin, Y. W. Wu, Y. C. Yang, T. J. Chang, Y. D. Jiang, L. M. Chuang, “Early myocardial repolarization heterogeneity is detected by magnetocardiography in diabetic patients with cardiovascular risk factors”, PLOS ONE, 10:7 (2015), e0133192 | DOI

[13] Y. Li, Z. Che, W. Quan, R. Yuan, Y. Shen, Z. Liu, W. Wang, H. Jin, G. Lu, “Diagnostic outcomes of magnetocardiography in patients with coronary artery disease”, International Journal of Clinical and Experimental Medicine, 8 (2015), 2441–2446

[14] A. Wacker-Gussmann, H. Paulsen, K. Stingl, J. Braendle, R. Goelz, J. Henes, “Atrioventricular conduction delay in the second trimester measured by fetal magnetocardiography”, Journal of Immunology Research, 2014, 753953 | DOI

[15] D. Cohen, U. Schlapfer, S. Ahlfors, M. Hamalainen, E. Halgren, “New Six-Layer Magnetically Shielded Room for MEG”, Biomag 2002: Proceedings of 13th International Conference on Biomagnetism, Berlin, 2002, 919–921

[16] J. Bork, H. D. Hahlbohm, R. Klein, A. Schnabel, “The 8-layered magnetically shielded room of the PTB: Design and construction”, Biomag 2000: Proceedings of the 12th International Conference on Biomagnetism, Springer, 2000

[17] M. A. Primin, Yu. V. Maslennikov, I. V. Nedaivoda, Yu. V. Gulyaev, “Magnitokardiograficheskaya tekhnologiya issledovaniya serdtsa cheloveka”, Biomeditsinskaya radioelektronika, 2016, no. 3, 3–22

[18] Yu. V. Maslennikov, M. A. Primin, V. Yu. Slobodchikov, I. V. Nedaivoda, V. A. Krymov, V. V. Khanin, G. G. Ivanov, N. A. Bulanova, S. Yu. Kuznetsova, V. N. Gunaeva, “Magnitometricheskie SKVID-sistemy dlya kardiodiagnostiki”, Meditsinskaya tekhnika, 3:303 (2017), 1–4

[19] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, U.S. Patent. US Patent App. Publ. 20160012011 A1.01/14/2016

[20] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits. 2014 Article, 8:43

[21] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci., 9 (2015), 373 | DOI

[22] M. A. Polikarpov, M. N. Ustinin, S. D. Rykunov, A. Y. Yurenya, S. P. Naurzakov, A. P. Grebenkin, V. Y. Panchenko, “3D imaging of magnetic particles using the 7-channel magnetoencephalography device without pre-magnetization or displacement of the sample”, Journal of Magnetism and Magnetic Materials, 427 (2017), 139–143 | DOI

[23] Yu. V. Maslennikov, Magnitometricheskie sistemy na osnove SKVIDov dlya biomeditsinskikh primenenii, diss. ... dokt. tekh. nauk, M., 2016, 186 pp.

[24] M. Frigo, S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI

[25] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI

[26] M. W. Garrett, “Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals”, J. Appl. Phys., 34 (1963), 2567–2573 | DOI