Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a0, author = {N. M. Pankratova and S. D. Rykunov and A. I. Boyko and D. A. Molchanova and M. N. Ustinin}, title = {Localization of encephalogram spectral features in psychic disorders}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {322--336}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a0/} }
TY - JOUR AU - N. M. Pankratova AU - S. D. Rykunov AU - A. I. Boyko AU - D. A. Molchanova AU - M. N. Ustinin TI - Localization of encephalogram spectral features in psychic disorders JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 322 EP - 336 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a0/ LA - ru ID - MBB_2018_13_2_a0 ER -
%0 Journal Article %A N. M. Pankratova %A S. D. Rykunov %A A. I. Boyko %A D. A. Molchanova %A M. N. Ustinin %T Localization of encephalogram spectral features in psychic disorders %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 322-336 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a0/ %G ru %F MBB_2018_13_2_a0
N. M. Pankratova; S. D. Rykunov; A. I. Boyko; D. A. Molchanova; M. N. Ustinin. Localization of encephalogram spectral features in psychic disorders. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 322-336. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a0/
[1] R. Llinás, “The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function”, Science, 242:4886 (1988), 1654–1664 | DOI
[2] R. R. Llinás, D. Pare, “Of dreaming, wakefulness”, Neuroscience, 1991, no. 3, 521–535 | DOI
[3] J. J. Schulman, R. Cancro, S. Lowe, F. Lu, K. D. Walton, R. R. Llinás, “Imaging of thalamocortical dysrhythmia in neuropsychiatry”, Frontiers in Human Neuroscience, 5 (2011), 69 | DOI
[4] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, U.S. Patent. US Patent App. Publ. 20160012011 A1.01/14/2016
[5] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI
[6] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci., 9 (2015), 373 | DOI
[7] S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sychev, R. R. Linas, “Kompleks programm dlya rascheta partsialnykh spektrov golovnogo mozga cheloveka”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 127–140 | DOI
[8] E. Honaga, R. Ishii, R. Kurimoto, L. Canuet, K. Ikezawa, H. Takahashi, T. Nakahachi, M. Iwase, I. Mizuta, N. Yoshimine, M. Takeda, “Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: An MEG study”, Neuroscience Letters, 478 (2010), 141–145 | DOI
[9] A. V. Kirenskaya, “EEG-issledovaniya v biologicheskoi psikhiatrii: osnovnye napravleniya i perspektivy”, Rossiiskii psikhiatricheskii zhurnal, 2006, no. 6, 19–27
[10] V. G. Ragozinskaya, “Osobennosti spektralnoi moschnosti EEG pri autoagressii”, Izvestiya vysshikh uchebnykh zavedenii. Uralskii region, 2015, no. 2, 97–104
[11] A. V. Kirenskaya-Berus, A. Ya. Gavrilenko, A. B. Zhuravlev, T. N. Lavrova, N. V. Maksimova, V. V. Myamlin, B. Yu. Novototskii-Vlasov, V. V. Vandysh-Bubko, A. A. Tkachenko, “EEG-issledovanie neirofiziologicheskikh mekhanizmov predispozitsii k gomitsidnomu povedeniyu u lits s organicheskimi psikhicheskimi rasstroistvami”, Agressiya i psikhicheskoe zdorove, eds. Dmitrieva T. B., Shostakovich B. V., M., 2002, 323–349
[12] A. Harrewijn, M. J.W. Van der Molen, P. M. Westenberg, “Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation”, Cognitive, Affective and Behavioral Neuroscience, 16:6 (2016), 1086–1098 | DOI
[13] A. V. Kirenskaya-Berus, A. A. Tkachenko, “Osobennosti spektralnykh kharakteristik EEG lits s deviantnym seksualnym povedeniem”, Fiziologiya cheloveka, 29:3 (2003), 22–32
[14] A. A. Fingelkurts, “Altered structure of dynamic electroencephalogram oscillatory pattern in major depression”, Biological Psychiatry, 77:12 (2015), 1050–1060 | DOI
[15] J. F. Cavanagh, A. J. Shackman, “Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence”, Journal of Physiology, Paris, 109 (2015), 3–15 | DOI
[16] J. F. L. Pinner, J. F. Cavanagh, “Frontal theta accounts for individual differences in the cost of conflict on decision making”, Brain Research, 1672 (2017), 73–80 | DOI
[17] S. S. Jeste, J. Frohlich, S. K. Loo, “Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders”, Current Opinion in Neurology, 28:2 (2015), 110–116 | DOI
[18] A. A. Pashkov, I. S. Dakhtin, N. S. Kharisova, “Elektroentsefalograficheskie biomarkery eksperimentalno indutsirovannogo stressa”, Vestnik YuUrGU. Seriya «Psikhologiya», 10:4 (2017), 68–82
[19] M. Palmiero, L. Piccardi, “Frontal EEG Asymmetry of Mood: A Mini-Review”, Frontiers in Behavioral Neuroscience, 11 (2017), 224 | DOI
[20] J. M. Koolhaas, A. Bartolomucci, B. Buwalda, S. F. de Boer, G. Flugge, S. M. Korte, P. Meerlo, R. Murison, B. Olivier, P. Palanza et al., “Stress revisited: a critical evaluation of stress concept”, Neuroscience and Biobehavioral Reviews, 35:5 (2011), 1291–1301 | DOI
[21] M. Fumoto, I. Sato-Suzuki, Y. Seki, Y. Mohri, H. Arita, “Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition”, Neuroscience Research, 50:3 (2004), 307–317 | DOI
[22] B. T. Dunkley, P. A. Sedge, S. M. Doesburg, R. J. Grodecki, R. Jetly, P. N. Shek, M. J. Taylor, Pang E. W., “Theta, mental flexibility and post-traumatic stress disorder: connecting in the parietal cortex”, PLOS One, 10:4 (2015), e0123541 | DOI
[23] S. J. Werff, S. M. van der Berg, J. N. Pannekoek, B. M. Elzinga, N. J. van der Wee, “Neuroimaging resilience to stress: a review”, Frontiers in Behavioral Neuroscience, 7 (2013), 39 | DOI
[24] R. R. Llinás, U. Ribary, D. Jeanmonod, E. Kronberg, P. P. Mitra, “Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography”, Proceedings of the National Academy of Sciences of the USA, 96 (1999), 15222–15227 | DOI
[25] J. J. Schulman, R. R. Ramirez, M. Zonenshayn, U. Ribary, R. R. Llinás, “Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain”, Thalamus Related Systems, 3:1 (2005), 33–39 | DOI
[26] N. M. Pankratova, M. N. Ustinin, R. Linas, “Obnaruzhenie patologicheskoi aktivnosti golovnogo mozga po dannym magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 679–690 | DOI
[27] T. S. Melnikova, I. A. Lapin, V. V. Sarkisyan, “Obzor ispolzovaniya kogerentnogo analiza EEG v psikhiatrii”, Sotsialnaya i klinicheskaya psikhiatriya, 19:1 (2009), 90–94 | MR
[28] E. A. Luschekina, O. Yu. Khaerdinova, V. S. Luschekin, V. B. Strelets, “Mezhpolusharnye razlichiya spektralnoi moschnosti i kogerentnosti ritmov EEG u detei s rastroistvami autisticheskogo spektra”, Fiziologiya cheloveka, 43:3 (2017), 32–42 | DOI
[29] V. B. Strelets, Magomedov R.A, Zh. V. Garakh, V. Yu. Novototskii-Vlasov, “Spektralnaya moschnost i vnutrikorkovye vzaimodeistviya po beta-ritmu v norme i pri shizofrenii”, Zhurn. vyssh. nervn. deyat., 54:2 (2004), 259–266 | MR
[30] C. Basar-Eroglu, C. Schmiedt-Fehr, S. Marbach, A. Brand, B. Mathes, “Altered oscillatory alpha and theta networks in schizophrenia”, Brain Res., 1235 (2008), 143–152 | DOI
[31] M. G. Knyazeva, M. Jalili, R. Meuli, M. Hasler, O. De Feo, K. Q. Do, “Alpha rhythm and hypofrontality in schizophrenia”, Acta Psychiatr. Scand., 118:3 (2008), 188–199 | DOI
[32] M. Gregory, D. Mandelbaum, “Evidence of a faster posterior dominant EEG rhythm in children with autism”, Research in Autism Spectrum Disorders, 2012, no. 6, 1000 | DOI | MR
[33] G. Rizzolatti, L. Craighero, “The mirror-neuron system”, Annual Review of Neuroscience, 27 (2004), 169–192 | DOI
[34] E. A. Luschekina, E. D. Podreznaya, V. S. Novototskii-Vlasov V. Yu. Luschekin, V. B. Strelets, “Sravnitelnoe issledovanie teta- i gamma-ritmov EEG v norme i pri rannem detskom autizme”, Zhurn. vyssh. nerv. deyat., 63:4 (2013), 451–459 | DOI
[35] D. A. Menassa, S. Braeutigama, A. Bailey, C. M. Falter-Wagner, “Frontal evoked $\gamma$ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task”, Neuroscience Letters, 665:5 (2018), 86–91 | DOI
[36] S. Makeig, T. P. Jung, A. J. Bell, D. Ghahremani, T. J. Sejnowski, “Blind separation of auditory event-related brain responses into independent components”, Proc. Natl.Acad. Sci. U.S.A., 94 (1997), 10979–10984 | DOI
[37] M. Frigo, S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI
[38] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI
[39] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32:1 (1987), 11–22 | DOI
[40] N. M. Pankratova, S. D. Rykunov, M. N. Ustinin, “Lokalizatsiya spektralnykh osobennostei entsefalogramm pri psikhicheskikh rasstroistvakh”, Preprinty IPM im. M.V. Keldysha, 2018, 138, 20 pp. | DOI