Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a8, author = {N. A. Ree and V. A. Likhoshvai and T. M. Khlebodarova}, title = {Membrane potential as a regulation mechanism of periplasmic nitrite reductase activity: a mathematical model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {238--269}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a8/} }
TY - JOUR AU - N. A. Ree AU - V. A. Likhoshvai AU - T. M. Khlebodarova TI - Membrane potential as a regulation mechanism of periplasmic nitrite reductase activity: a mathematical model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 238 EP - 269 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a8/ LA - ru ID - MBB_2018_13_1_a8 ER -
%0 Journal Article %A N. A. Ree %A V. A. Likhoshvai %A T. M. Khlebodarova %T Membrane potential as a regulation mechanism of periplasmic nitrite reductase activity: a mathematical model %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 238-269 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a8/ %G ru %F MBB_2018_13_1_a8
N. A. Ree; V. A. Likhoshvai; T. M. Khlebodarova. Membrane potential as a regulation mechanism of periplasmic nitrite reductase activity: a mathematical model. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 238-269. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a8/
[1] J. Simon, “Enzymology and bioenergetics of respiratory nitrite ammonification”, FEMS Microbiology Reviews, 26:3 (2002), 285–309 | DOI | DOI
[2] J. Simon, M. G. Klotz, “Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations”, Biochim. Biophys. Acta, 1827:2 (2013), 114–135 | DOI | DOI
[3] L. Page, L. Griffiths, J. A. Cole, “Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria”, Arch. Microbiol., 154:4 (1990), 349–354 | DOI | DOI
[4] J. Cole, Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?, FEMS Microbiol. Lett., 136:1 (1996), 1–11 | DOI | MR | DOI | MR
[5] H. Abaibou, J. Pommier, S. Benoit, G. Giordano, M. A. Mandrand-Berthelot, “Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase”, J. Bacteriol., 177:24 (1995), 7141–7149 | DOI | DOI
[6] H. Wang, R. P. Gunsalus, “Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP”, J. Bacteriol., 185:17 (2003), 5076–5085 | DOI | DOI
[7] H. Wang, R. P. Gunsalus, “The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite”, J. Bacteriol., 182 (2000), 5813–5822 | DOI | DOI
[8] A. Darwin, P. Tormay, L. Page, L. Griffiths, J. Cole, “Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12”, J. Gen Microbiol., 139:8 (1993), 1829–1840 | DOI | DOI
[9] V. Stewart, P. Bledsoe, “Synthetic lac operator substitutions for studying the nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory systems of Escherichia coli K-12”, J. Bacteriol., 185 (2003), 2104–2111 | DOI | DOI
[10] T. M. Khlebodarova, V. V. Kogai, I. R. Akberdin, N. A. Fadeev S. I. Ri, V. A. Likhoshvai, “Modelirovanie utilizatsii nitrita kletkami Escherichia coli: analiz potokov”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 276–294 | DOI | DOI
[11] N. A. Ri, V. A. Likhoshvai, T. M. Khlebodarova, “O mekhanizmakh utilizatsii nitrita kletkami Escherichia coli pri kultivirovanii ikh v usloviyakh statsionarnogo rosta”, Matematicheskaya biologiya i bioinformatika, 10:1 (2015), 193–205 | DOI | MR | DOI | MR
[12] T. M. Khlebodarova, N. A. Ree, V. A. Likhoshvai, “On the control mechanisms of the nitrite level in Escherichia coli cells: the mathematical model”, BMC Microbiol., 16:7, Suppl 1 (2016) | DOI | DOI
[13] M. Hakobyan, H. Sargsyan, K. Bagramyan, “Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli”, Biophys. Chem., 115 (2005), 55–61 | DOI | DOI
[14] S. C. Andrews, B. C. Berks, J. McClay, A. Ambler, M. A. Quail, P. Guest, J. R. Golby, “A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate-hydrogenlyase system”, Microbiology, 143 (1997), 3633–3647 | DOI | DOI
[15] H. Wang, C. P. Tseng, R. P. Gunsalus, “The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite”, J. Bacteriol., 181:17 (1999), 5303–5308
[16] J. S. McDowall, B. J. Murphy, M. Haumann, T. Palmer, F. A. Armstrong, F. Sargent, “Bacterial formate hydrogenlyase complex”, Proc. Natl. Acad. Sci. USA, 111:38 (2014), 3948–3956 | DOI | DOI
[17] “F. Sargent”, Adv. Microb. Physiol., 68, 433–507 | DOI | DOI
[18] K. Noguchi, D. P. Riggins, K. C. Eldahan, R. D. Kitko, J. L. Slonczewski, “Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli”, PLoS One, 5:4 (2010), e10132 | DOI | DOI
[19] R. Rossmann, G. Sawers, A. Bock, “Mechanism of regulation of the formatehydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon”, Mol Microbiol., 5:11 (1991), 2807–2814 | DOI | DOI
[20] C. P. Tseng, A. K. Hansen, P. Cotter, R. P. Gunsalus, “Effect of cell growth rate on expression of the anaerobic respiratory pathway operons frdABCD, dmsABC, and narGHJI of Escherichia coli”, J. Bacteriol., 176:21 (1994), 6599–6605 | DOI | DOI
[21] C. Pinske, M. Jaroschinsky, S. Linek, C. L. Kelly, F. Sargent, R. G. Sawers, “Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli”, J. Bacteriol., 197:2 (2015), 296–306 | DOI | DOI
[22] S. P. Ballantine, D. H. Boxer, “Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli”, Eur. J. Biochem., 156:2 (1986), 277–284 | DOI | DOI
[23] K. Francis, P. Patel, J. C. Wendt, K. T. Shanmugam, “Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli”, J. Bacteriol., 172:10 (1990), 5750–5757 | DOI | DOI
[24] M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer, T. Palmer, F. Sargent, F. A. Armstrong, “How Escherichia coli is equipped to oxidize hydrogen under different redox conditions”, J. Biol. Chem., 285:6 (2010), 3928–2938 | DOI | DOI
[25] T. V. Laurinavichene, A. A. Tsygankov, “H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors”, FEMS Microbiol. Lett., 202:1 (2001), 121–124 | DOI | DOI
[26] R. G. Efremov, L. A. Sazanov, “The coupling mechanism of respiratory complex I - a structural and evolutionary perspective”, Biochim. Biophys. Acta, 1817:10 (2012), 1785–1795 | DOI | DOI
[27] J. D. Gwyer, D. J. Richardson, J. N. Butt, “Inhibiting Escherichia coli cytochrome c nitrite reductase: voltammetry reveals an enzyme equipped for action despite the chemical challenges it may face in vivo”, Biochem. Soc. Trans., 2006, no. 1, 133–135 | DOI | DOI
[28] C. Pinske, F. Sargent, “Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid”, Microbiologyopen, 5:5 (2016), 721–737 | DOI | DOI
[29] D. A. Skibinski, P. Golby, Y. S. Chang, F. Sargent, R. Hoffman, R. Harper, J. R. Guest, M. M. Attwood, B. C. Berks, S. C. Andrews, “Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR”, J. Bacteriol., 184:23 (2002), 6642–6653 | DOI | DOI
[30] K. Bagramyan, N. Mnatsakanyan, A. Poladian, A. Vassilian, A. Trchounian, “The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH”, FEBS Lett., 516:1–3 (2002), 172–178 | DOI | DOI
[31] N. Mnatsakanyan, K. Bagramyan, A. Trchounian, “Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate”, Cell. Biochem. Biophys., 41:3 (2004), 357–366 | DOI | DOI
[32] V. Likhoshvai, A. Ratushny, “Generalized Hill function method for modeling molecular processes”, J. Bioinform. Comput. Biol., 2007, 521–531 | DOI | DOI
[33] R. G. Sawers, “Formate and its role in hydrogen production in Escherichia coli”, Biochem. Soc. Trans., 2005, 42–46 | DOI | DOI
[34] M. Kaiser, G. Sawers, “Nitrate repression of the Escherichia coli pfl operon is mediated by the dual sensors NarQ and NarX and the dual regulators NarL and NarP”, J. Bacteriol., 177:13 (1995), 3647–3655 | DOI | DOI
[35] R. G. Sawers, “The hydrogenases and formate dehydrogenases of Escherichia coli”, Antonie Van Leeuwenhoek, 66 (1994), 57–88 | DOI | DOI
[36] S. Hopper, M. Babst, V. Schlensog, H. M. Fischer, H. Hennecke, A. Bock, “Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli”, J. Biol. Chem., 269:30 (1994), 19597–19604
[37] D. J. Richard, G. Sawers, F. Sargent, L. McWalter, D. H. Boxer, “Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe]hydrogenases 1 and 2 of Escherichia coli”, Microbiology., 145 (1999), 2903–2912 | DOI | DOI
[38] E. Kasimoglu, S. J. Park, J. Malek, C. P. Tseng, R. P. Gunsalus, “Transcriptional regulation of the proton-translocating ATPase (atpIBEFHAGDC) operon of Escherichia coli: control by cell growth rate”, J. Bacteriol., 178:19 (1996), 5563–5567 | DOI | DOI
[39] A. Wiedenmann, P. Dimroth, C. von Ballmoos, “Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases”, Biochim. Biophys. Acta, 1777:10 (2008), 1301–1310 | DOI | DOI
[40] H. Bremer, P. P. Dennis, “Modulation of chemical composition and other parameters of the cell at different exponential growth rates”, EcoSal. Plus., 3:1 (2008) | DOI | DOI
[41] G. Unden, J. Bongaerts, “Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors”, Biochim. Biophys. Acta, 1320:3 (1997), 217–234 | DOI | DOI
[42] C. E. Outten, T. V. O'Halloran, “Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis”, Science, 292:5526 (2001), 2488–2492 | DOI | DOI
[43] M. J. Axley, D. A. Grahame, “Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase”, J. Biol. Chem., 266:21 (1991), 13731–13736
[44] C. Etzold, G. Deckers-Hebestreit, K. Altendorf, “Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles”, Eur. J. Biochem., 243:1–2 (1997), 336–343 | DOI | DOI
[45] T. Maeda, V. Sanchez-Torres, T. K. Wood, “Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities”, Appl. Microbiol. Biotechnol., 76:5 (2007), 1035–1042 | DOI | DOI
[46] S. Leonhartsberger, I. Korsa, A. Bock, “The molecular biology of formate metabolism in enterobacteria”, J. Mol. Microbiol. Biotechnol., 4:3 (2002), 269–276
[47] J. C. Wilks, J. L. Slonczewski, “pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry”, J. Bacteriol., 189:15 (2007), 5601–5607 | DOI | DOI
[48] A. Rodrigue, A. Chanal, K. Beck, M. Muller, L. F. Wu, “Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway”, J. Biol. Chem., 274:19 (1999), 13223–13228 | DOI | DOI
[49] N. Pope, J. Cole, “Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli”, J. Gen. Microbiol., 128 (1982), 219–222
[50] C. Daniels, D. Bole, S. Quay, D. Oxender, “Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli”, Proc. Natl. Acad. Sci. USA, 78 (1981), 5396–5400 | DOI | DOI
[51] C. E. Price, A. J. M. Driessen, “Biogenesis of membrane bound respiratory complexes in Escherichia coli”, Biochim. Biophys. Acta, 1803:6 (2010), 748–766 | DOI | DOI
[52] S. A. Jones, F. Z. Chowdhury, A. J. Fabich, A. Anderson, D. M. Schreiner, A. L. House, S. M. Autieri, M. P. Leatham, J. J. Lins, M. Jorgensen, P. S. Cohen, T. Conway, “Respiration of Escherichia coli in the mouse intestine”, Infect. Immun., 75:10 (2007), 4891–4899 | DOI | DOI
[53] V. Stewart, Y. Lu, A. J. Darwin, “Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12”, J. Bacteriol., 184:5 (2002), 1314–1323 | DOI | DOI
[54] C. Aldridge, A. Storm, K. Cline, C. Dabney-Smith, “The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport”, J. Biol. Chem., 287:41 (2012), 34752–34763 | DOI | DOI
[55] S. D. Dyall, M. T. Brown, P. J. Johnson, “Ancient invasions: from endosymbionts to organelles”, Science, 304:5668 (2004), 253–257 | DOI | DOI
[56] V. Zimorski, C. Ku, W. F. Martin, S. B. Gould, “Endosymbiotic theory for organelle origins”, Curr. Opin. Microbiol., 2014, 38–48 | DOI | DOI
[57] R. G. Sawers, D. J. Jamieson, C. F. Higgins, D. H. Boxer, “Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium”, J. Bacteriol., 168 (1986), 398–404 | DOI | DOI
[58] T. A. Clarke, J. A. Cole, D. J. Richardson, A. M. Hemmings, “The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solutionstate interaction with the pentahaem nitrite reductase NrfA”, Biochem J., 406 (2007), 19–30 | DOI | DOI
[59] L. L. Graham, R. Harris, W. Villiger, T. J. Beveridge, “Freeze-substitution of gramnegative eubacteria: general cell morphology and envelope profiles”, J Bacteriol., 173 (1991), 1623–1633 | DOI | DOI
[60] K. Talmadge, W. Gilbert, “Cellular location affects protein stability in Escherichia coli”, Proc. Natl. Acad. Sci. USA, 79 (1982), 1830–1833 | DOI | DOI
[61] G. L. Kemp, T. A. Clarke, S. J. Marritt, C. Lockwood, S. R. Poock, A. M. Hemmings, “Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli”, Biochem J., 431 (2010), 73–80 | DOI | DOI
[62] K. J. Coleman, A. Cornish-Bowden, J. A. Cole, “Activation of nitrite reductase from Escherichia coli K 12 by oxidized nicotinamide-adenine dinucleotide”, Biochem. J., 175 (1978), 495–499 | DOI | DOI