Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a7, author = {A. S. Shigaev and T. B. Feldman and V. A. Nadtochenko and M. A. Ostrovsky and V. D. Lakhno}, title = {Investigation of rhodopsin chromophore photoisomerization based on the quantum-classical model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {169--186}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a7/} }
TY - JOUR AU - A. S. Shigaev AU - T. B. Feldman AU - V. A. Nadtochenko AU - M. A. Ostrovsky AU - V. D. Lakhno TI - Investigation of rhodopsin chromophore photoisomerization based on the quantum-classical model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 169 EP - 186 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a7/ LA - ru ID - MBB_2018_13_1_a7 ER -
%0 Journal Article %A A. S. Shigaev %A T. B. Feldman %A V. A. Nadtochenko %A M. A. Ostrovsky %A V. D. Lakhno %T Investigation of rhodopsin chromophore photoisomerization based on the quantum-classical model %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 169-186 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a7/ %G ru %F MBB_2018_13_1_a7
A. S. Shigaev; T. B. Feldman; V. A. Nadtochenko; M. A. Ostrovsky; V. D. Lakhno. Investigation of rhodopsin chromophore photoisomerization based on the quantum-classical model. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 169-186. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a7/
[1] T. D. Lamb, S. P. Collin, E. N. Jr. Pugh, “Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup”, Nat. Rev. Neurosci., 8 (2007), 960–976 | DOI
[2] S. T. Menon, M. Han, T. P. Sakmar, “Rhodopsin: Structural Basis of Molecular Physiology”, Physiol. Rev., 81 (2001), 1659–1688 | DOI
[3] J. L. Spudich, C. S. Yang, K. H. Jung, E. N. Spudich, “Retinylidene Proteins: Structures and Functions from Archaea to Humans”, Annu. Rev. Cell Dev. Biol., 16 (2000), 365–392 | DOI
[4] V. A. Nadtochenko, O. A. Smitienko, T. B. Feldman, M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, O. M. Sarkisov, M. A. Ostrovsky, “Conical intersection participation in femtosecond dynamics of visual pigment rhodopsin chromophore cis-trans photoisomerization”, Dokl. Biochem. Biophys., 446 (2012), 242–246 | DOI
[5] D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision”, Nature, 467 (2010), 440–443 | DOI
[6] A. Yabushita, T. Kobayashi, M. Tsuda, “Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation”, J. Phys. Chem. B, 116 (2012), 1920–1926 | DOI
[7] H. J. Dartnall, “The photosensitivities of visual pigments in the presence of hydroxylamine”, Vision Res., 8 (1968), 339–358 | DOI
[8] H. Kandori, S. Matuoka, Y. Shichida, T. Yoshizawa, M. Ito, K. Tsukida, V. BaloghNair, K. Nakanishi, “Mechanism of isomerisation of rhodopsin studied by use of 11- cis-locked rhodopsin analogues excited with a picoseconds laser pulse”, Biochemistry, 28 (1989), 6460–6467 | DOI
[9] T. Mizukami, H. Kandori, Y. Shichida, A. H. Chen, F. Derguini, C. G. Caldwell, C. Biffe, K. Nakanishi, T. Yoshizawa, “Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eightmembered ring retinal”, Proc. Natl. Acad. Sci. USA, 90 (1993), 4072–4076 | DOI
[10] L. A. Peteanu, R. W. Schoenlein, Q. Wang, R. A. Mathies, C. V. Shank, “The first step in vision occurs in femtoseconds: complete blue and red spectral studies”, Proc. Natl. Acad. Sci. USA, 90 (1993), 11762–11766 | DOI
[11] R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, C. V. Shank, “The first step in vision: femtosecond isomerization of rhodopsin”, Science, 254 (1991), 412–415 | DOI
[12] P. J. M. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst, R. J. D. Miller, “Local vibrational coherences drive the primary photochemistry of vision”, Nat. Chem., 7 (2015), 980–986 | DOI
[13] C. Schnedermann, M. Liebel, P. Kukura, “Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event”, J. Am. Chem. Soc., 137 (2015), 2886–2891 | DOI
[14] O. Smitienko, V. Nadtochenko, T. Feldman, M. Balatskaya, I. Shelaev, F. Gostev, O. Sarkisov, M. Ostrovsky, “Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin)”, Molecules, 19 (2014), 18351–18366 | DOI
[15] O. A. Smitienko, M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, T. B. Feldman, V. A. Nadtochenko, O. M. Sarkisov, M. A. Ostrovsky, “Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin”, Biochemistry (Moscow), 75 (2010), 25–35 | DOI
[16] G. A. Worth, L. S. Cederbaum, “Beyond Born-Oppenheimer: molecular dynamics through a conical intersection”, Annu. Rev. Phys. Chem., 55 (2004), 127–158 | DOI
[17] R. Gonzalez-Luque, M. Garavelli, F. Bernardi, M. Merchan, M. A. Robb, M. Olivucci, “Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization”, Proc. Natl. Acad. Sci. USA, 97 (2000), 9379–9384 | DOI
[18] D. Polli, I. Rivalta, A. Nenov, O. Weingart, M. Garavelli, G. Cerullo, “Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy”, Photochem. Photobiol. Sci., 14 (2015), 213–228 | DOI
[19] I. Schapiro, M. N. Ryazantsev, L. M. Frutos, N. Ferre, R. Lindh, M. Olivucci, “The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects”, J. Am. Chem. Soc., 133 (2011), 3354–3364 | DOI
[20] M. Abe, Y. Ohtsuki, Y. Fujimura, W. Domcke, “Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection”, J. Chem. Phys., 123 (2015), 144508 | DOI
[21] B. G. Levine, T. M. Martinez, “Isomerization through conical intersections”, Annu. Rev. Phys. Chem., 58 (2008), 613–634 | DOI
[22] G. Tomasello, G. Olaso-Gonzalez, P. Altoe, M. Stenta, L. Serrano-Andres, M. Merchan, G. Orlandi, A. Bottoni, M. Garavelli, “Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching”, J. Am. Chem. Soc., 131 (2009), 5172–5186 | DOI
[23] G. G. Kochendoerfer, R. A. Mathies, “Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin”, J. Phys. Chem., 100 (1996), 14526–14532 | DOI
[24] V. D. Lakhno, A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovskii, “Kvantovo-klassicheskaya model reaktsii fotoizomerizatsii retinalya v zritelnom pigmente rodopsine”, DAN, 471 (2016), 604–608 | DOI
[25] W. C. Chung, S. Nanbu, T. Ishida, “QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin”, J. Phys. Chem. B, 116 (2012), 8009–8023 | DOI
[26] I. Rivalta, A. Nenov, O. Weingart, G. Cerullo, M. Garavelli, S. Mukamel, “Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin”, J. Phys. Chem. B, 118 (2014), 8396–8405 | DOI
[27] T. V. Tscherbul, P. Brumer, “Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation”, Phys. Chem. Chem. Phys., 17 (2015), 30904–30913 | DOI
[28] O. Weingart, P. Altoe, M. Stenta, A. Bottoni, G. Orlandi, M. Garavelli, “Product formation in rhodopsin by fast hydrogen motions”, Phys. Chem. Chem. Phys., 13 (2011), 3645–3648 | DOI
[29] O. Weingart, M. Garavelli, “Modelling vibrational coherence in the primary rhodopsin photoproduct”, J. Chem. Phys., 137 (2012), 22A523 | DOI
[30] B. Honig, M. Karplus, “Implications of torsional potential of retinal isomers for visual excitation”, Nature, 229 (1971), 558–560 | DOI
[31] A. Warshel, “Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture)”, Angew. Chem. Int. Ed. Engl., 53:38 (2014), 10020–10031 | DOI
[32] T. Andruniow, N. Ferre, M. Olivucci M., “Structure initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level”, Proc. Natl. Acad. Sci. USA, 101 (2004), 17908–17913 | DOI
[33] B. Borhan, M. L. Soutu, H. Imai, Y. Shichida, K. Nakanishi, “Movement of retinal along the visual transduction path”, Science, 288 (2000), 2209–2212 | DOI
[34] R. S. H. Liu, “Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction”, Acc. Chem. Res., 34 (2001), 555–562 | DOI
[35] R. S. Liu, L. Y. Yang, J. Liu, “Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities”, Photochem. Photobiol., 83 (2007), 2–10 | DOI
[36] H. Nakamichi, T. Okada, “Crystallographic analysis of primary visual photochemistry”, Angew. Chem. Int. Ed., 45 (2006), 4270–4273 | DOI
[37] S. O. Smith, J. Courtin, H. J. M. de Groot, M. Gebhard, J. Lugtenburg, “13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin”, Biochemistry, 30 (1991), 7409–7415 | DOI
[38] J. Saam, E. Tajkhorshid, S. Hayashi, K. Schulten, “Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin”, Biophys. J., 83 (2002), 3097–3112 | DOI
[39] A. Yamada, T. Yamato, T. Kakitani, S. Yamamoto, “Torsion potential works in rhodopsin”, Photochem. Photobiol., 79 (2014), 476–486 | DOI
[40] Kh. T. Kholmurodov, T. B. Feldman, M. A. Ostrovsky, “Visual pigment rhodopsin: molecular dynamics of 11-cis-retinal chromophore and amino-acid residues in the chromophore center”, Computer simulation study, Mendeleev comm., v. 1, 2006, 1–8 | DOI
[41] B. Isin, K. Schulten, E. Tajkhorshid, I. Bahar, “Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes”, Biophys. J., 95 (2008), 789–803 | DOI
[42] T. Holstein, “Studies of polaron motion:The molecular-crystal model”, Ann. Phys., 8 (1959), 325–342 | DOI | Zbl
[43] A. S. Davydov, “The theory of contraction of proteins under their excitation”, J. Theor. Biology, 38 (1973), 559–569 | DOI
[44] A. S. Davydov, “Solitons and energy transfer along protein molecules”, J. Theor. Biology, 66 (1977), 379–387 | DOI
[45] Bernassoni J. (ed.), Physics in One Dimension, Springer series in solid-state sciences, 23, Springer-Verlag, 1981 | DOI
[46] Y. Okahata, T. Kobayashi, K. Tanaka, M. J. Shimomura, “Anisotropic Electric Conductivity in an Aligned DNA Cast Film”, J. Am. Chem. Soc., 120 (1998), 6165–6166 | DOI
[47] E. B. Starikov, J. P. Lewis, S. Tanaka (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier, 2006
[48] T. Cramer, T. Steinbrecher, A. Labahn, T. Koslowski, “Static and dynamic aspects of DNA charge transfer: a theoretical perspective”, Phys. Chem. Chem. Phys., 7 (2005), 4039–4050 | DOI
[49] V. D. Lakhno, “Oscilations in the primary charge separation in bacterial photosynthesis”, Phys. Chem. Chem. Phys., 4 (2002), 2246–2250 | DOI
[50] V. D. Lakhno, “Dynamical theory of primary processes of charge separation in the photosynthetic reaction center”, J. Biol. Phys., 31 (2005), 145–159 | DOI
[51] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI
[52] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “AC conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI
[53] E. Diaz, R. P. A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard–Bishop–Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI
[54] V. D. Lakhno, V. B. Sultanov, B. Montgomery Pettitt, “Combined hopping-superexchange model of a hole transfer in DNA”, Chem. Phys. Lett., 400 (2004), 47–53 | DOI
[55] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chem. Phys. Lett., 513 (2011), 276–279 | DOI
[56] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 | DOI
[57] U. M. Ganter, E. D. Schmid, D. Perez-Sala, R. R. Rando, F. Siebert, “Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation”, Biochemistry, 28 (1989), 5954–5962 | DOI
[58] M. Han, M. Groesbeek, S. O. Smith, T. P. Sakmar, “Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal”, Biochemistry, 37 (1998), 538–545 | DOI
[59] C. K. Meyer, M. Bohme, A. Ockenfels, W. Gartner, K. P. Hofmann, O. P. Ernst, “Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches”, J. Biol. Chem., 275 (2000), 19713–19718 | DOI
[60] V. Lemaitre, P. Yeagle, A. Watts, “Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin”, Biochemistry, 44 (2005), 12667–12680 | DOI
[61] Kh. T. Kholmurodov, T. B. Feldman, M. A. Ostrovskii, “Molecular dynamics simulation and experimental studies of the visual pigment rhodopsin: multiple conformational states and structural changes”, Molecular Simulation Studies in Material and Biological Sciences, ed. Kh. T. Kholmurodov, Nova Science Publishers Inc., N.Y., 2007, 85–113
[62] S. W. Lin, M. Groesbeek, I. van der Hoef, P. Verdegem, J. Lugtenburg, R. A. Mathies, “Vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C11dC12 torsion coordinate”, J. Phys. Chem. B, 102 (1998), 2787–2806 | DOI
[63] J. E. Kim, R. A. Mathies, “Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin”, J. Phys. Chem. A, 106 (2002), 8508–8515 | DOI
[64] N. S. Fialko, V. D. Lakhno, “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108–112 | DOI
[65] Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision”, Science, 266 (1994), 422–424 | DOI
[66] T. B. Feldman, O. A. Smitienko, I. V. Shelaev, F. E. Gostev, O. V. Nekrasova, D. A. Dolgikh, V. A. Nadtochenko, M. P. Kirpichnikov, M. A. Ostrovsky, “Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin”, J. Photochem. Photobiol. B: Biology, 164 (2016), 296–305 | DOI
[67] A. Cooper, “Energy uptake in the first step of visual excitation”, Nature, 282 (1979), 531–533 | DOI
[68] R. R. Birge, T. M. Cooper, “Energy storage in the primary step of the photocycle of bacteriorhodopsin”, Biophys. J., 42, 1983–69 | DOI