Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a5, author = {K. V. Shlufman and G. P. Neverova and E. Ya. Frisman}, title = {Phase multistability of dynamics modes of the {Ricker} model with periodic {Malthusian} parameter}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {68--83}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/} }
TY - JOUR AU - K. V. Shlufman AU - G. P. Neverova AU - E. Ya. Frisman TI - Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 68 EP - 83 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/ LA - ru ID - MBB_2018_13_1_a5 ER -
%0 Journal Article %A K. V. Shlufman %A G. P. Neverova %A E. Ya. Frisman %T Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 68-83 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/ %G ru %F MBB_2018_13_1_a5
K. V. Shlufman; G. P. Neverova; E. Ya. Frisman. Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 68-83. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/
[1] Anischenko V. S., Nikolaev V. V., Shabunin A. V., Astakhov V. V., “Issledovanie khaoticheskoi sinkhronizatsii v sisteme simmetrichno svyazannykh generatorov”, Radiotekhnika i elektronika, 45:2 (2000), 196–203
[2] Bezruchko B. P., Prokhorov M. D., Seleznev E. P., “Vidy kolebanii, multistabilnost i basseiny prityazheniya attraktorov simmetrichno svyazannykh sistem s udvoeniem perioda. Izvestiya vysshikh uchebnykh zavedenii”, Prikladnaya nelineinaya dinamika, 10:4 (2002), 47–67 | Zbl
[3] Smirnov D. A., Sidak E. V., Bezruchko B. P., “Statisticheskie svoistva otsenki koeffitsienta fazovoi sinkhronizatsii”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 16:2 (2008), 111–121 | Zbl
[4] Koblyanskii S. A., Shabunin A. V., Astakhov V. V., “Vynuzhdennaya sinkhronizatsiya periodicheskikh kolebanii v sisteme s fazovoi multistabilnostyu”, Nelineinaya dinamika, 6:2 (2010), 277–289
[5] Kuznetsov A. P., Savin A. V., Sedova Yu. V., Tyuryukina L. V., Bifurkatsii otobrazhenii, OOO Izdatelskii tsentr «Nauka», Saratov, 2012, 196 pp.
[6] Koronovskii A. A., Trubetskov D. I., Nelineinaya dinamika v deistvii: Kak idei nelineinoi dinamiki pronikayut v ekologiyu, ekonomiku i sotsialnye nauki, Izd.-vo GosUNTs «Kolledzh», Saratov, 2002, 324 pp.
[7] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 368 pp.
[8] Wilmshurst J. F., Greer R., Henry J. D., “Correlated cycles of snowshoe hares and Dall's sheep lambs”, Can. J. Zool., 84 (2006), 736–743 | DOI
[9] Elmhagen B., Hellstrom P., Angerbjorn A., Kindberg J., “Changes in vole and lemming fluctuations in northern Sweden 1960–2008 revealed by fox dynamics”, Annales Zoologici Fennici, 48:3 (2011), 167–179 | DOI
[10] Kulakov M. P., Neverova G. P., Frisman E. Ya., “Multistabilnost v modelyakh dinamiki migratsionno-svyazannykh populyatsii s vozrastnoi strukturoi”, Nelineinaya dinamika, 10:4 (2014), 407–425
[11] Kurilova E. V., Kulakov M. P., Frisman E. Ya., “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa «khischnik-zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 2015, no. 3, 24–34
[12] Krebs C. J., Kielland K., Bryant J., O'Donoghue M., Doyle F., McIntyre C., DiFolco D., Berg N., Carriere S., Boonstra R. et al., “Synchrony in the showshoe hare (Lepus Americanus) cycle in northwestern North America, 1970–2012”, Can. J. Zool., 91:8 (2013), 562–572 | DOI
[13] Petrovskaya N., Petrovskii S., “Catching ghosts with a coarse net: use and abuse of spatial sampling data in detecting synchronization”, Journal of the Royal Society Interface, 14:127 (2017), 20160855 | DOI
[14] Henson S. M., Cushing J. M., Costantino R. F., Dennis B., Desharnais R. A., “Phase switching in population cycles”, Proc. R. Soc. Lond. B, 265 (1998), 2229–2234 | DOI
[15] Chernyavskii F. B., Lazutkin A. N., Tsikly lemmingov i polevok na Severe, IBPS DVO RAN, Magadan, 2004, 150 pp.
[16] Zhigalskii O. A., “Struktura populyatsionnykh tsiklov ryzhei polevki (Myodes glareolus) v tsentre i na periferii areala”, Izv. RAN. Ser. biol., 2011, no. 6, 733–746
[17] Kausrud K. L., Mysterud A., Steen H., Vik J. O., Østbye E., Cazelles B., Framstad E., Eikeset A. M., Mysterud I., Solhoy T., Stenseth N. Chr., “Linking climate change to lemming cycles”, Nature, 456 (2008), 93–97 | DOI
[18] Henttonen H., Wallgren H., “Small rodent dynamics and communities in the birch forest zone of northern Fennoscandia”, Nordic mountain birch ecosystems, Ch. 22, UNESCO Man and Biosphere Series, 27, ed. Wielgolaski F. E., UNESCO, Paris; Parthenon Publishing Group, New York–London, 2001, 263–280
[19] Frisman E. Ya., Neverova G. P., Kulakov M. P., Zhigalskii O. A., “Smena dinamicheskikh rezhimov v populyatsiyakh vidov s korotkim zhiznennym tsiklom: rezultaty analiticheskogo i chislennogo issledovaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 414–429 | DOI
[20] Revutskaya O. L., Kulakov M. P., Neverova G. P., Frisman E. Ya., “Vliyanie sootnosheniya polov na dinamiku chislennosti dvukhvozrastnoi populyatsii”, Matematicheskaya biologiya i bioinformatika, 12:2 (2017), 237–255 | DOI
[21] Kaev A. M., “Vremennaya struktura migratsionnogo potoka gorbushi Oncorhynchus gorbuscha v Okhotskoe more”, Izvestiya TINRO, 2002, no. 1–3, 904–920
[22] Shlyufman K. V., Neverova G. P., Frisman E. Ya., “Dva tsikly uravneniya Rikera s periodicheski izmenyayuschimsya maltuzianskim parametrom: ustoichivost i multistabilnost”, Nelineinaya dinamika, 12:4 (2016), 553–565
[23] Shlyufman K. V., Neverova G. P., Frisman E. Ya., “Dinamicheskie rezhimy modeli Rikera s periodicheski izmenyayuschimsya maltuzianskim parametrom”, Nelineinaya dinamika, 13:3 (2017), 363–380 | Zbl
[24] Revutskaya O. L., “Vliyanie klimaticheskikh faktorov (temperatury i osadkov) na dinamiku chislennosti kopytnykh (na primere Evreiskoi avtonomnoi oblasti)”, Regionalnye problemy, 15:2 (2012), 5–11
[25] Nedorezov L. V., Sadykova D. L., “Dynamics of larch bud moth populations: application of Moran-Ricker models with time lag”, Ecological Modelling, 297 (2015), 26–32 | DOI
[26] Neverova G. P., Yarovenko I. P., Frisman E. Y., “Dynamics of populations with delayed density dependent birth rate regulation”, Ecological Modelling, 340 (2016), 64–73 | DOI
[27] Ashikhmina E. V., Skaletskaya E. I., Frisman E. Ya., Kulikov A. M., “Matematicheskaya model dinamiki velichiny zagotovok na primere lokalnoi populyatsii manchzhurskoi belki”, Zhurnal obschei biologii, 43:5 (1982), 246–257
[28] Revutskaya O. L., “Analiz vliyaniya zapasov korma na dinamiku chislennosti populyatsii belki (na primere Evreiskoi avtonomnoi oblasti)”, Regionalnye problemy, 13:2 (2010), 37–44 | Zbl
[29] Zhou Z., Zou X., “Stable periodic solutions in a discrete logistic equation”, Appl. Math. Lett., 16 (2003), 165–171 | DOI | MR | Zbl
[30] Elaydi S., Sacker R., “Basin of attraction of periodic orbits of maps on the real line”, Journal of Difference Equations and Applications, 10 (2004), 881–888 | DOI | MR | Zbl
[31] Ashikhmina E. V., Izrailskii Yu. G., Frisman E. Ya., “Dinamicheskoe povedenie modeli Rikera pri tsiklicheskom izmenenii odnogo iz parametrov”, Vestnik DVO RAN, 2004, no. 5, 19–28
[32] Kon R., “Attenuant cycles of population models with periodic carrying capacity”, J. Difference Eq. Appl., 11:4–5 (2005), 423–430 | DOI | MR | Zbl
[33] AlSharawi Z., Angelos J., Elaydi S., Rakesh L., “An extension of Sharkovsky's theorem to periodic difference equations”, Journal of Mathematical Analysis and Applications, 316 (2006), 128–141 | DOI | MR | Zbl
[34] AlSharawi Z., Angelos J., Elaydi S., “Existence and stability of periodic orbits of periodic difference equations with delays”, International Journal of Bifurcation and Chaos, 18:1 (2008), 203–217 | DOI | MR | Zbl
[35] Sacker R. J., “A note on periodic Ricker maps”, Journal of Difference Equations and Applications, 13:1 (2007), 89–92 | DOI | MR | Zbl
[36] Elaydi S. N., Luis R., Oliveira H., “Towards a theory of periodic difference equations and its application to population dynamics”, Dynamics, Games and Science I, Springer, Berlin–Heidelberg, 2011, 287–321 | DOI | MR | Zbl
[37] Sacker R. J., Hubertus F., “A conjecture on the stability of the periodic solutions of Ricker's equation with periodic parameters”, Applied Mathematics and Computation, 217:3 (2010), 1213–1219 | DOI | MR | Zbl
[38] Riker U. E., Metody otsenki i interpretatsii biologicheskikh pokazatelei populyatsii ryb, Pischevaya promyshlennost, M., 1979, 408 pp.
[39] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005, 416 pp.
[40] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsii promysla, Nauka, M., 1979, 168 pp.