Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 68-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the phase multistability of dynamical modes of the Ricker model with 2-year periodic Malthusian parameter. It is shown that both the variable perturbation and the phase shift of the Malthusian parameter can lead to a phase shift or a change in the dynamic mode observed. The possibility of switches between different dynamic modes is due to multistability, since the model has two different stable 2-cycles. The first stable 2-cycle is the result of transcritical bifurcation and is synchronous to the oscillations of the Malthusian parameter. The second stable 2-cycle arises as a result of the tangent bifurcation and is asynchronous to the oscillations of the Malthusian parameter. This indicates that two-year fluctuations in the population size can be both synchronous and asynchronous to the fluctuations in the environment. The phase shift of the Malthusian parameter causes a phase shift in the stable 4-cycle of the first bifurcation series to one or even three elements of the 4-cycle. The phase shift to two elements of this 4-cycle is possible due to a change in the half-amplitude of the Malthusian parameter oscillation or the variable perturbation. At the same time, the longer period of the cycle, the more phases with their attraction basins it has, and the smaller the threshold values above which shift from the attraction basin to another one occur. As a result, in the case of cycles with long period (for example, 8-cycle) perturbations, that stable cycles with short period are able to "absorb", can cause different phase transitions, which significantly complicates the dynamics of the model trajectory and, as a consequence, the identification of the dynamic mode observed.  
@article{MBB_2018_13_1_a5,
     author = {K. V. Shlufman and G. P. Neverova and E. Ya. Frisman},
     title = {Phase multistability of dynamics modes of the {Ricker} model with periodic {Malthusian} parameter},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/}
}
TY  - JOUR
AU  - K. V. Shlufman
AU  - G. P. Neverova
AU  - E. Ya. Frisman
TI  - Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 68
EP  - 83
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/
LA  - ru
ID  - MBB_2018_13_1_a5
ER  - 
%0 Journal Article
%A K. V. Shlufman
%A G. P. Neverova
%A E. Ya. Frisman
%T Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 68-83
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/
%G ru
%F MBB_2018_13_1_a5
K. V. Shlufman; G. P. Neverova; E. Ya. Frisman. Phase multistability of dynamics modes of the Ricker model with periodic Malthusian parameter. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 68-83. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a5/

[1] Anischenko V. S., Nikolaev V. V., Shabunin A. V., Astakhov V. V., “Issledovanie khaoticheskoi sinkhronizatsii v sisteme simmetrichno svyazannykh generatorov”, Radiotekhnika i elektronika, 45:2 (2000), 196–203

[2] Bezruchko B. P., Prokhorov M. D., Seleznev E. P., “Vidy kolebanii, multistabilnost i basseiny prityazheniya attraktorov simmetrichno svyazannykh sistem s udvoeniem perioda. Izvestiya vysshikh uchebnykh zavedenii”, Prikladnaya nelineinaya dinamika, 10:4 (2002), 47–67 | Zbl

[3] Smirnov D. A., Sidak E. V., Bezruchko B. P., “Statisticheskie svoistva otsenki koeffitsienta fazovoi sinkhronizatsii”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 16:2 (2008), 111–121 | Zbl

[4] Koblyanskii S. A., Shabunin A. V., Astakhov V. V., “Vynuzhdennaya sinkhronizatsiya periodicheskikh kolebanii v sisteme s fazovoi multistabilnostyu”, Nelineinaya dinamika, 6:2 (2010), 277–289

[5] Kuznetsov A. P., Savin A. V., Sedova Yu. V., Tyuryukina L. V., Bifurkatsii otobrazhenii, OOO Izdatelskii tsentr «Nauka», Saratov, 2012, 196 pp.

[6] Koronovskii A. A., Trubetskov D. I., Nelineinaya dinamika v deistvii: Kak idei nelineinoi dinamiki pronikayut v ekologiyu, ekonomiku i sotsialnye nauki, Izd.-vo GosUNTs «Kolledzh», Saratov, 2002, 324 pp.

[7] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 368 pp.

[8] Wilmshurst J. F., Greer R., Henry J. D., “Correlated cycles of snowshoe hares and Dall's sheep lambs”, Can. J. Zool., 84 (2006), 736–743 | DOI

[9] Elmhagen B., Hellstrom P., Angerbjorn A., Kindberg J., “Changes in vole and lemming fluctuations in northern Sweden 1960–2008 revealed by fox dynamics”, Annales Zoologici Fennici, 48:3 (2011), 167–179 | DOI

[10] Kulakov M. P., Neverova G. P., Frisman E. Ya., “Multistabilnost v modelyakh dinamiki migratsionno-svyazannykh populyatsii s vozrastnoi strukturoi”, Nelineinaya dinamika, 10:4 (2014), 407–425

[11] Kurilova E. V., Kulakov M. P., Frisman E. Ya., “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa «khischnik-zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 2015, no. 3, 24–34

[12] Krebs C. J., Kielland K., Bryant J., O'Donoghue M., Doyle F., McIntyre C., DiFolco D., Berg N., Carriere S., Boonstra R. et al., “Synchrony in the showshoe hare (Lepus Americanus) cycle in northwestern North America, 1970–2012”, Can. J. Zool., 91:8 (2013), 562–572 | DOI

[13] Petrovskaya N., Petrovskii S., “Catching ghosts with a coarse net: use and abuse of spatial sampling data in detecting synchronization”, Journal of the Royal Society Interface, 14:127 (2017), 20160855 | DOI

[14] Henson S. M., Cushing J. M., Costantino R. F., Dennis B., Desharnais R. A., “Phase switching in population cycles”, Proc. R. Soc. Lond. B, 265 (1998), 2229–2234 | DOI

[15] Chernyavskii F. B., Lazutkin A. N., Tsikly lemmingov i polevok na Severe, IBPS DVO RAN, Magadan, 2004, 150 pp.

[16] Zhigalskii O. A., “Struktura populyatsionnykh tsiklov ryzhei polevki (Myodes glareolus) v tsentre i na periferii areala”, Izv. RAN. Ser. biol., 2011, no. 6, 733–746

[17] Kausrud K. L., Mysterud A., Steen H., Vik J. O., Østbye E., Cazelles B., Framstad E., Eikeset A. M., Mysterud I., Solhoy T., Stenseth N. Chr., “Linking climate change to lemming cycles”, Nature, 456 (2008), 93–97 | DOI

[18] Henttonen H., Wallgren H., “Small rodent dynamics and communities in the birch forest zone of northern Fennoscandia”, Nordic mountain birch ecosystems, Ch. 22, UNESCO Man and Biosphere Series, 27, ed. Wielgolaski F. E., UNESCO, Paris; Parthenon Publishing Group, New York–London, 2001, 263–280

[19] Frisman E. Ya., Neverova G. P., Kulakov M. P., Zhigalskii O. A., “Smena dinamicheskikh rezhimov v populyatsiyakh vidov s korotkim zhiznennym tsiklom: rezultaty analiticheskogo i chislennogo issledovaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 414–429 | DOI

[20] Revutskaya O. L., Kulakov M. P., Neverova G. P., Frisman E. Ya., “Vliyanie sootnosheniya polov na dinamiku chislennosti dvukhvozrastnoi populyatsii”, Matematicheskaya biologiya i bioinformatika, 12:2 (2017), 237–255 | DOI

[21] Kaev A. M., “Vremennaya struktura migratsionnogo potoka gorbushi Oncorhynchus gorbuscha v Okhotskoe more”, Izvestiya TINRO, 2002, no. 1–3, 904–920

[22] Shlyufman K. V., Neverova G. P., Frisman E. Ya., “Dva tsikly uravneniya Rikera s periodicheski izmenyayuschimsya maltuzianskim parametrom: ustoichivost i multistabilnost”, Nelineinaya dinamika, 12:4 (2016), 553–565

[23] Shlyufman K. V., Neverova G. P., Frisman E. Ya., “Dinamicheskie rezhimy modeli Rikera s periodicheski izmenyayuschimsya maltuzianskim parametrom”, Nelineinaya dinamika, 13:3 (2017), 363–380 | Zbl

[24] Revutskaya O. L., “Vliyanie klimaticheskikh faktorov (temperatury i osadkov) na dinamiku chislennosti kopytnykh (na primere Evreiskoi avtonomnoi oblasti)”, Regionalnye problemy, 15:2 (2012), 5–11

[25] Nedorezov L. V., Sadykova D. L., “Dynamics of larch bud moth populations: application of Moran-Ricker models with time lag”, Ecological Modelling, 297 (2015), 26–32 | DOI

[26] Neverova G. P., Yarovenko I. P., Frisman E. Y., “Dynamics of populations with delayed density dependent birth rate regulation”, Ecological Modelling, 340 (2016), 64–73 | DOI

[27] Ashikhmina E. V., Skaletskaya E. I., Frisman E. Ya., Kulikov A. M., “Matematicheskaya model dinamiki velichiny zagotovok na primere lokalnoi populyatsii manchzhurskoi belki”, Zhurnal obschei biologii, 43:5 (1982), 246–257

[28] Revutskaya O. L., “Analiz vliyaniya zapasov korma na dinamiku chislennosti populyatsii belki (na primere Evreiskoi avtonomnoi oblasti)”, Regionalnye problemy, 13:2 (2010), 37–44 | Zbl

[29] Zhou Z., Zou X., “Stable periodic solutions in a discrete logistic equation”, Appl. Math. Lett., 16 (2003), 165–171 | DOI | MR | Zbl

[30] Elaydi S., Sacker R., “Basin of attraction of periodic orbits of maps on the real line”, Journal of Difference Equations and Applications, 10 (2004), 881–888 | DOI | MR | Zbl

[31] Ashikhmina E. V., Izrailskii Yu. G., Frisman E. Ya., “Dinamicheskoe povedenie modeli Rikera pri tsiklicheskom izmenenii odnogo iz parametrov”, Vestnik DVO RAN, 2004, no. 5, 19–28

[32] Kon R., “Attenuant cycles of population models with periodic carrying capacity”, J. Difference Eq. Appl., 11:4–5 (2005), 423–430 | DOI | MR | Zbl

[33] AlSharawi Z., Angelos J., Elaydi S., Rakesh L., “An extension of Sharkovsky's theorem to periodic difference equations”, Journal of Mathematical Analysis and Applications, 316 (2006), 128–141 | DOI | MR | Zbl

[34] AlSharawi Z., Angelos J., Elaydi S., “Existence and stability of periodic orbits of periodic difference equations with delays”, International Journal of Bifurcation and Chaos, 18:1 (2008), 203–217 | DOI | MR | Zbl

[35] Sacker R. J., “A note on periodic Ricker maps”, Journal of Difference Equations and Applications, 13:1 (2007), 89–92 | DOI | MR | Zbl

[36] Elaydi S. N., Luis R., Oliveira H., “Towards a theory of periodic difference equations and its application to population dynamics”, Dynamics, Games and Science I, Springer, Berlin–Heidelberg, 2011, 287–321 | DOI | MR | Zbl

[37] Sacker R. J., Hubertus F., “A conjecture on the stability of the periodic solutions of Ricker's equation with periodic parameters”, Applied Mathematics and Computation, 217:3 (2010), 1213–1219 | DOI | MR | Zbl

[38] Riker U. E., Metody otsenki i interpretatsii biologicheskikh pokazatelei populyatsii ryb, Pischevaya promyshlennost, M., 1979, 408 pp.

[39] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005, 416 pp.

[40] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsii promysla, Nauka, M., 1979, 168 pp.