Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a3, author = {A. M. Andrianov and G. I. Nikolaev and I. A. Kashin and Y. V. Kornoushenko and S. A. Usanov}, title = {Molecular modeling of novel non-steroidal aromatase inhibitors containing 1,2,4-triazole}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {290--307}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a3/} }
TY - JOUR AU - A. M. Andrianov AU - G. I. Nikolaev AU - I. A. Kashin AU - Y. V. Kornoushenko AU - S. A. Usanov TI - Molecular modeling of novel non-steroidal aromatase inhibitors containing 1,2,4-triazole JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 290 EP - 307 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a3/ LA - ru ID - MBB_2018_13_1_a3 ER -
%0 Journal Article %A A. M. Andrianov %A G. I. Nikolaev %A I. A. Kashin %A Y. V. Kornoushenko %A S. A. Usanov %T Molecular modeling of novel non-steroidal aromatase inhibitors containing 1,2,4-triazole %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 290-307 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a3/ %G ru %F MBB_2018_13_1_a3
A. M. Andrianov; G. I. Nikolaev; I. A. Kashin; Y. V. Kornoushenko; S. A. Usanov. Molecular modeling of novel non-steroidal aromatase inhibitors containing 1,2,4-triazole. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 290-307. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a3/
[1] L. F. Macedo, G. Sabnis, A. Brodie, “Aromatase inhibitors and breast cancer”, Ann. N. Y. Acad. Sci., 1155 (2009), 162–173 | DOI | DOI
[2] D. Ghosh, J. Griswold, M. Erman, W. Pangborn, “Structural basis for androgen specifity and oestrogen synthesis in human aromatase”, Nature, 457:7226 (2009), 219–223 | DOI | DOI
[3] Y. Hong, S. Chen, “Aromatase inhibitors: structural features and biochemical characterization”, Ann. N. Y. Acad. Sci., 1089 (2006), 237–251 | DOI | DOI
[4] U. Dutta, K. Pant, “Aromatase inhibitors: past, present and future in breast cancer therapy”, Med. Oncol., 25:2 (2008), 113–124 | DOI | DOI
[5] D. Ghosh, J. Lo, C. Egbuta, “Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective”, J. Med. Chem., 59 (2016), 5131–5148 | DOI | DOI
[6] D. Schuster, C. Laggner, T. M. Steindl, A. Palusczak, R. W. Hartmann, T. Langer, “Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors”, J. Chem. Inf. Model., 46:3 (2006), 1301–1311 | DOI | DOI
[7] M. A. Neves, T. C. Dinis, G. Colombo, M. L. Sá e Melo, “Fast three dimensional pharmacophore virtual screening of new potent nonsteroid aromatase inhibitors”, J. Med. Chem., 52:1 (2009), 143–150 | DOI | DOI
[8] M. A. Neves, T. C. Dinis, G. Colombo, M. L. Sá e Melo, “An efficient steroid pharmacophore-based strategy to identify new aromatase inhibitors”, Eur. J. Med. Chem., 44:10 (2009), 4121–4127 | DOI | DOI
[9] D. Ghosh, J. Griswold, M. Erman, W. Pangborn, “X-ray structure of human aromatase reveals an androgen-specific active site”, J. Steroid Biochem. Mol. Biol., 118:4–5 (2010), 197–202 | DOI | DOI
[10] P. P. Roy, K. Roy, “Molecular docking and QSAR studies of aromatase inhibitor androstenedione derivatives”, J. Pharm. Pharmacol., 62 (2010), 1717–1728 | DOI | DOI
[11] D. Ghosh, J. Lo, D. Morton, D. Valette, J. Xi, J. Griswold, S. Hubbell, C. Egbuta, W. Jiang, J. An, H. M. Davies, “Novel aromatase inhibitors by structure-guided design”, J. Med. Chem., 55 (2012), 8464–8476 | DOI | DOI
[12] K. Bonfield, E. Amato, T. Bankemper, H. Agard, J. Steller, J. M. Keeler, D. Roy, A. McCallum, S. Paula, L. Ma, “Development of a new class of aromatase inhibitors: design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives”, Bioorg. Med. Chem., 20 (2012), 2603–2613 | DOI | DOI
[13] H. Xie, K. Qiu, X. Xie, “3D QSAR studies, pharmacophore modeling and virtual screening on a series of steroidal aromatase inhibitors”, Int. J. Mol. Sci., 15 (2014), 20927–20947 | DOI | DOI
[14] S. Lee, M. G. Barron, “Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches”, Toxicol. Sci., 148 (2015), 60–70 | DOI | DOI
[15] S. Chen, J. H. Hsieh, R. Huang, S. Sakamuru, L. Y. Hsin, M. Xia, K. R. Shockley, S. Auerbach, N. Kanaya, H. Lu, D. Svoboda, K. L. Witt, B. A. Merrick, C. T. Teng, R. R. Tice, “Cell-based high-throughput screening for aromatase inhibitors in the Tox21 10K library”, Toxicol. Sci., 147 (2015), 446–457 | DOI | DOI
[16] R. Ghodsi, B. Hemmateenejad, “QSAR study of diarylalkylimidazole and diarylalkyltriazole aromatase inhibitors”, Med. Chem. Res., 25 (2016), 834–842 | DOI | DOI
[17] S. Lee, M. G. Barron, “A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs”, J. Comput. Aided Mol. Des., 30 (2016), 347–36 | DOI | DOI
[18] A. M. Prior, X. Yu, Park E-J, T. P. Kondratyuk, Y. Lin, J. M. Pezzuto, D. Sun, “Structureactivity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinine reductase 1”, Bioorganic Med. Chem. Letters., 27 (2017), 5393–5399 | DOI | DOI
[19] A. Mojaddami, A. Sakhteman, M. Fereidoonnezhad, Z. Faghih, A. Najdian, S. Khabnadideh, H. Sadeghpour, Z. Rezaei, “Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies”, Res. Pharm. Sci., 12:1 (2017), 21–30 | DOI | DOI
[20] M. Akram, W. Waratchareeyakul, J. Haupenthal, R. W. Hartmann, D. Schuster, “Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors”, Front. Chem., 5 (2017), 104 | DOI | DOI
[21] S. Lee, M. G. Barron, “3D-QSAR study of steroidal and azaheterocyclic human aromatase inhibitors using quantitative profile of protein-ligand interactions”, J. Cheminform., 10 (2018), 2 | DOI | DOI
[22] H. C. Kolb, M. G. Finn, K. B. Sharpless, “Click chemistry: Diverse chemical function from a few good reactions”, Angew. Chem. Int. Ed., 40:11 (2001), 2004–2021 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI
[23] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev., 46:1–3 (2001), 3–26 | DOI | DOI
[24] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, “ZINC: A free tool to discover chemistry for biology”, J. Chem. Inf. Model., 52:7 (2012), 1757–1768 | DOI | DOI
[25] T. Sander, J. Freyss, M. von Korff, C. Rufener, “DataWarrior: An open-source program for chemistry aware data visualization and analysis”, J. Chem. Inf. Model., 55:2 (2015), 460–473 | DOI | DOI
[26] J. D. Durrant, J. A. McCammon, “AutoClickChem: Click shemistry in silico”, PLoS Comput. Biol., 8:3 (2012), e1002397 | DOI | DOI
[27] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, J. Woolsey, “DrugBank: a comprehensive resource for in silico drug discovery and exploration”, Nucleic Acids Res., 34, Database issue (2006), D668–672 | DOI | DOI
[28] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, “DrugBank 5.0: a major update to the DrugBank database for 2018”, Nucleic Acids Res., 2017 | DOI | DOI
[29] S. D. Handoko, X. Ouyang, C. T.T. Su, C. K. Kwoh, Y. S. Ong, “QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization”, TCBB, 9:5 (2012), 1266–1272
[30] Open Babel: The Open Source Chemistry Toolbox, (data obrascheniya: 09.06.2018) http://openbabel.org/wiki/Main_Page
[31] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, Skiff W. M., “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., 114:25 (1992), 10024–10035 | DOI | DOI
[32] General Description of MORAC, (data obrascheniya: 09.06.2018) http://openmopac.net/manual
[33] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model., 29 (2011), 888–893 | DOI | DOI
[34] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238 (1994), 777–793 | DOI | DOI
[35] Y. C. Kao, K. R. Korzekwa, C. A. Laughton, S. Chen, “Evaluation of the mechanism of aromatase cytochrome P450. A site-directed mutagenesis study”, Eur. J. Biochem., 268:2 (2001), 243–251 | DOI | DOI
[36] A. S. Christensen, T. Kubar, Q. Cui, M. Elstner, “Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications”, Chem. Rev., 116:9 (2016), 5301–5337 | DOI | DOI