Application of M-matrices for the study of mathematical models of living systems
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 208-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results are presented of application of M-matrices to the study the stability problem of the equilibriums of differential equations used in models of living systems. The models studied are described by differential equations with several delays, including distributed delay, and by high-dimensional systems of differential equations. To study the stability of the equilibriums the linearization method is used. Emerging systems of linear differential equations have a specific structure of the right-hand parts, which allows to effectively use the properties of M-matrices. As examples, the results of studies of models arising in immunology, epidemiology and ecology are presented.  
@article{MBB_2018_13_1_a13,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {Application of {M-matrices} for the study of mathematical models of living systems},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {208--237},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a13/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - Application of M-matrices for the study of mathematical models of living systems
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 208
EP  - 237
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a13/
LA  - ru
ID  - MBB_2018_13_1_a13
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T Application of M-matrices for the study of mathematical models of living systems
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 208-237
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a13/
%G ru
%F MBB_2018_13_1_a13
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Application of M-matrices for the study of mathematical models of living systems. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 208-237. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a13/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp.

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp.

[3] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976, 352 pp.

[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp.

[5] Ortega Dzh., Reinbolt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 558 pp.

[6] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. | MR | Zbl

[7] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp.

[8] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp.

[9] Obolenskii A. Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukrainskii matematicheskii zhurnal, 35 (1983), 574–579 | Zbl

[10] Volz R., “Stability conditions for systems of linear nonautonomous delay differential equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl

[11] Deri I., Pertsev N. V., “Ob ustoichivosti polozhenii ravnovesiya funktsionalno differentsialnykh uravnenii zapazdyvayuschego tipa, obladayuschikh svoistvom smeshannoi monotonnosti”, Doklady AN SSSR, 297:1 (1987), 23–25

[12] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp.

[13] Marchuk G. I., Matematicheskie modeli v immunologii, Nauka, M., 1985, 240 pp.

[14] Marchuk G. I., Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 304 pp.

[15] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp.

[16] Nelson P. W., Perelson A. S., “Mathematical analysis of delay differential equation models of HIV-1 infection”, Math. Biosci., 179 (2002), 73–94 | DOI | MR | Zbl

[17] Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A., “Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling”, Math. Model. Nat. Phenom., 7:5 (2012), 78–104 | DOI | MR | Zbl

[18] Pawelek K. A., Liu S., Pahlevani F., Rong L., “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci., 235:1 (2012), 98–109 | DOI | MR | Zbl

[19] Pitchaimani M., Monica C., “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48 (2015), 293–319 | DOI | MR | Zbl

[20] Wang J., Lang J., Zou X., “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Analysis: Real World Applications, 34 (2017), 75–96 | DOI | MR | Zbl

[21] Pertsev N. V., “Globalnaya razreshimost i otsenki reshenii zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii s zapazdyvaniem, ispolzuemykh v modelyakh zhivykh sistem”, Sibirskii matematicheskii zhurnal, 59:1 (2018), 143–157 | Zbl

[22] Pertsev N. V., “Nepreryvno-diskretnaya model rasprostraneniya i kontrolya tuberkuleza”, Sibirskii zhurnal industrialnoi matematiki, 17:3 (2014), 86–97 | Zbl

[23] Pertsev N. V., “Issledovanie reshenii matematicheskikh modelei epidemicheskikh protsessov, obladayuschikh obschimi strukturnymi svoistvami”, Sibirskii zhurnal industrialnoi matematiki, 18:2 (2015), 85–98 | DOI | Zbl

[24] Romanyukha A. A., Nosova E. A., “Model rasprostraneniya VICh-infektsii v rezultate sotsialnoi dezadaptatsii”, Upravlenie bolshimi sistemami, 34 (2011), 227–253

[25] Nosova E. A., “Modeli kontrolya i rasprostraneniya VICh-infektsii”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 632–675 | DOI

[26] Pertsev N. V., Pichugin B. Yu., Pichugina A. N., “Issledovanie asimptoticheskogo povedeniya reshenii nekotorykh modelei epidemicheskikh protsessov”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 21–48 | DOI

[27] Pichugina A. N., “Integrodifferentsialnaya model populyatsii, podverzhennoi vozdeistviyu vrednykh veschestv”, Sibirskii zhurnal industrialnoi matematiki, 7:4 (2004), 130–140 | Zbl

[28] Pertsev N. V., Tsaregorodtseva G. E., “Modelirovanie dinamiki populyatsii v usloviyakh vozdeistviya vrednykh veschestv na protsess reproduktsii osobei”, Avtomatika i telemekhanika, 2011, no. 1, 141–153

[29] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp.

[30] Aleksandrov A. Yu., Zhabko A. P., “Ob asimptoticheskoi ustoichivosti reshenii nelineinykh sistem s zapazdyvaniem”, Sibirskii matematicheskii zhurnal, 53:3 (2012), 495–508 | Zbl

[31] Balandin A. S., Sabatulina T. L., “Lokalnaya ustoichivost odnoi modeli dinamiki populyatsii v usloviyakh vozdeistviya vrednykh veschestv”, Sibirskie elektronnye matematicheskie izvestiya, 12 (2015), 610–624 | DOI | Zbl

[32] Malygina V. V., Mulyukov M. V., “O lokalnoi ustoichivosti odnoi modeli dinamiki populyatsii s tremya stadiyami razvitiya”, Izvestiya vuzov. Matematika, 2017, no. 4, 35–42

[33] Golubyatnikov V. P., Kirillova N. E., “O tsiklakh v modelyakh funktsionirovaniya koltsevykh gennykh setei”, Sibirskii zhurnal chistoi i prikladnoi matematiki, 18:1 (2018), 54–63

[34] Bocharov G. A., Marchuk G. I., “Prikladnye problemy matematicheskogo modelirovaniya v immunologii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:12 (2000), 1905–1920 | Zbl

[35] Luzyanina T., Sieber J., Engelborghs K., Samaey G., Roose D., “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI