Nonlinear concave spiral autowaves in active media, transferring energy, their application in biology and medicine
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 187-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper reviews the works devoted to convex spiral autowaves, which are widely known. Recently a new type of autowaves has been discovered - concave autowaves, they propagate from the periphery of active media to the center and are capable of transfering energy. It is proved that concave spiral autowaves can exist in specific inhomogeneous active media. Their existence is confirmed by computational experiments. It is established that concave autowaves are widespread in nature. The article gives a more detailed review of the biological and medical applications of spiral concave autowaves, it is also known that there are many of them in physics, chemistry, hydrodynamics, meteorology, and space. Concave spiral autowaves, carrying energy, are one of the essential tools of self-organization.  
@article{MBB_2018_13_1_a12,
     author = {M. E. Mazurov},
     title = {Nonlinear concave spiral autowaves in active media, transferring energy, their application in biology and medicine},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {187--207},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a12/}
}
TY  - JOUR
AU  - M. E. Mazurov
TI  - Nonlinear concave spiral autowaves in active media, transferring energy, their application in biology and medicine
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 187
EP  - 207
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a12/
LA  - ru
ID  - MBB_2018_13_1_a12
ER  - 
%0 Journal Article
%A M. E. Mazurov
%T Nonlinear concave spiral autowaves in active media, transferring energy, their application in biology and medicine
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 187-207
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a12/
%G ru
%F MBB_2018_13_1_a12
M. E. Mazurov. Nonlinear concave spiral autowaves in active media, transferring energy, their application in biology and medicine. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 187-207. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a12/

[1] Belousov B. P., Avtovolnovye protsessy v sistemakh s diffuziei, Izd-vo GGU, Gorkii, 1951

[2] Zhabotinskii A. M., Kontsentratsionnye kolebaniya, Nauka, M., 1974

[3] Field R. J., Noyes R. M., “Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction”, J. Chem. Phys., 60 (1974), 1877–1884 | DOI

[4] Winfree A. T., “Spiral waves of chemical activity”, Science, 175 (1972), 634 | DOI

[5] Winfree A. T., “Stable particle-like solutions to the nonlinear wave equations of three-dimentional active media”, SIAM Review, 32 (1990), 1 | DOI | MR | Zbl

[6] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2011, 558 pp.

[7] Mazurov M. E., Nelineinaya sinkhronizatsiya i ritmogenez v elektrovozbudimykh sistemakh serdtsa, diss.: ... d.f.-m.n., Puschino, 2007

[8] Mazurov M. E., “Upravlenie edinym ritmom serdtsa”, Biofizika, 54:1 (2009), 89–96

[9] Ardashev A. V., Mazurov M. E., Kalyuzhnyi I. M., Zhelyakov E. G., Belenkov Yu. N., “Sravnenie effektivnosti tsirkulyarnykh i lineinykh vozdeistvii pri lechenii bolnykh mertsatelnoi aritmiei metodom radiochastotnoi ablyatsii v sochetanii s matematicheskim modelirovaniem s ispolzovaniem metoda skanirovaniya”, Kardiologiya, 2012, no. 7, 50–55

[10] Mazurov M. E., Kalyuzhnyi I. M., “Avtovolny krugovogo tipa v predserdiyakh cheloveka i nachalnye usloviya dlya ikh vozniknoveniya”, Vestnik MGU. Seriya: Fizika, Astronomiya, 2014, no. 3, 45–49

[11] Vanag V. K., “Volny i dinamicheskie struktury v reaktsionno-diffuzionnykh sistemakh. Reaktsiya Belousova-Zhabotinskogo v obraschennoi mikroemulsii”, UFN, 174:9 (2004), 991 | DOI

[12] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh: Eksperiment i teoriya, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2008

[13] Zykov V. S., Modelirovanie volnovykh protsessov v vozbudimykh sredakh, Nauka, M., 1968

[14] Ataullakhanov F. I., Zarnitsyna V. I., Kondratovich A. Yu., Lobanova E. S., Sarbash V. I., “Osobyi klass avtovoln — avtovolny s ostanovkoi — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi”, UFN, 172:6 (2002), 671–690 | DOI

[15] Ivanitskii G. R., Medvinskii A. B., Tsyganov M. A., “Ot besporyadka k uporyadochennosti na primere dvizheniya mikroorganizmov”, UFN, 161:4 (1991), 13–71 | DOI

[16] Ivanitskii G. R., Medvinskii A. B., Tsyganov M. A., “Ot dinamiki populyatsionnykh avtovoln, formiruemykh kletkami k neiroinformatike”, UFN, 164:10 (1994), 1041–1072 | DOI

[17] Vanag V. K., Epstein I. R., “Inwardly Rotating Spiral Waves in Reaction-Diffusion System”, Science, 294:5543 (2001), 835 | DOI

[18] Aslanidi O. V., Mornev O. A., “Ekho v vozbudimykh voloknakh serdtsa (po dannym chislennykh eksperimentov)”, Matem. modelirovanie, 11:9 (1999), 3–22

[19] Mornev O. A., Aslanidi O. V., Chailakhyan L. M., “Solitonnyi rezhim v sisteme uravnenii Fitskhyu-Nagumo: dinamika vraschayuscheisya spiralnoi volny”, DAN, 353 (1997), 682–686 | Zbl

[20] Mornev O. A., Tsyganov I. M., Aslanidi O. V., Tsyganov M. A., “Za granitsami teorii Kuramoto-Zeldovicha: ustoichivo vraschayuschiesya vognutye spiralnye volny i ikh svyaz s fenomenom ekha”, Pisma v ZhETF, 77:6 (2003), 319–325

[21] FitzHugh R. A., “Mathematical models of excitation and propagation in nerve”, Biophys. J., 1:6 (1961), 445 | DOI

[22] Loskutov A. Yu., Mikhailov A. S., Osnovy teorii slozhnykh sistem, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2007, 620 pp.

[23] Mazurov M. E., Kalyuzhnyi I. M., “O vognutykh avtovolnakh”, Matematicheskaya biologiya i bioinformatika, Sbornik dokladov V Mezhdunarodnoi konferentsii, ed. V.D. Lakhno, MAKS Press, M., 2014, 49–50

[24] Mazurov M. E., “Nelineinye vognutye spiralnye avtovolny i ikh prilozheniya”, Izv. RAN. Seriya fizicheskaya, 82:1 (2018), 72–77 | DOI

[25] Mazurov M. E., “Sinkhronizatsiya relaksatsionnykh avtokolebatelnykh sistem, sinkhronizatsiya v neironnykh setyakh”, Izv. RAN. Seriya fizicheskaya, 82:1 (2018), 83–87 | DOI

[26] Markin V. S., Pastushenko V. F., Chizmadzhev Yu. A., Teoriya vozbudimykh sred, Nauka, M., 1981

[27] Zilbernagl S., Despopulos A., Naglyadnaya fiziologiya, BINOM. Laboratoriya znanii, M., 2013, 408 pp.

[28] Shvenk T., Chuvstvuyuschii khaos. Obrazovanie dvizhuschikhsya form v vode i vozdukhe, Novyi tsentr, M., 2003, 215 pp.

[29] Kiknadze G. I., Krasnov Yu. K., “Evolyutsiya smercheobraznykh techenii vyazkoi zhidkosti”, DAN, 290:6 (1986), 1315–1319 | Zbl

[30] Kiknadze G. I., Krasnov Yu. K., Podymaka N. F., Khabenskii V. B., “Samoorganizatsiya smerchevykh struktur v potoke vody nad polusfericheskoi lunkoi”, DAN, 291:12 (1986), 1315–1318

[31] Kiknadze G. I., Oleinikov V. G., Gechechiladze I. A., Gorodkov A. Yu., Dobrova I. B., Bakei Sh., Bara Zh. L., “O strukture potoka v levom zheludochke serdtsa i aorte s primeneniem tochnykh reshenii nestatsionarnykh uravnenii gidrodinamiki i morfometricheskikh issledovanii”, DAN, 351:1 (1996), 119–122