Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a10, author = {I. A. Borisova and O. A. Kutnenko}, title = {The problem of correction diagnostic errors in the target attribute with the function of rival similarity}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {38--49}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a10/} }
TY - JOUR AU - I. A. Borisova AU - O. A. Kutnenko TI - The problem of correction diagnostic errors in the target attribute with the function of rival similarity JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 38 EP - 49 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a10/ LA - ru ID - MBB_2018_13_1_a10 ER -
%0 Journal Article %A I. A. Borisova %A O. A. Kutnenko %T The problem of correction diagnostic errors in the target attribute with the function of rival similarity %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 38-49 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a10/ %G ru %F MBB_2018_13_1_a10
I. A. Borisova; O. A. Kutnenko. The problem of correction diagnostic errors in the target attribute with the function of rival similarity. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 38-49. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a10/
[1] de Waal T., Pannekoek J., Scholtus S., Handbook of Statistical Data Editing and Imputation, John Wiley and Sons, Inc., Hoboken, New Jersey, 2011, 456 pp. | DOI
[2] Jason W. Osborne, Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data, 1st Edition, SAGE Publication, Inc., Los Angeles, 2013, 296 pp. | DOI
[3] Alessio Farcomeni, Luca Greco, Robust Methods for Data Reduction, Chapman and Hall/CRC, 2015, 297 pp.
[4] Teng C. M., “A comparison of noise handling techniques”, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, 2001, 269–273
[5] Quinlan J. R., “Induction of decision trees”, Machine Learning, 1:1 (1986), 81–106 | DOI | DOI | MR
[6] Frünay B., Verleysen M., “Classification in the Presence of Label Noise: a Survey”, IEEE Transactions on neural networks and learning systems, 25:5 (2014), 845–869 | DOI
[7] Segata N., Blanzieri E., “Noise Reduction for Instance-Based Learning with a Local Maximal Margin Approach”, Journal of Intelligent Information Systems, 35 (2010) | DOI
[8] Massie S., Craw S., Wiratunga N., “When Similar Problems Don't Have Similar Solutions”, Proceedings of the 7th International Conference on Case-Based Reasoning, ICCBR 07, Springer-Verlag, Berlin–Heidelberg, 2007, 92–106 | DOI
[9] Son S.-H., Kim J.-Y., “Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning”, Proceedings of the International Conference on Computational Science and Its Applications, 2006, 590–599 | DOI
[10] Delany S. J., Segata N., Mac Namee B., “Profiling Instances in Noise Reduction”, Knowledge-Based Systems, 31 (2012), 28–40 | DOI
[11] Borisova I. A., Kutnenko O. A., “Tsenzurirovanie oshibochno klassifitsirovannykh ob'ektov vyborki”, Mashinnoe obuchenie i analiz dannykh, 1:11 (2015), 1632–1641
[12] Yang Y., Wu X., Zhu X., “Dealing with Predictive-but-Unpredictable Attributes in Noisy Data Sources”, Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (Pisa, Italy, 2004) | DOI
[13] Brodley C. E., Friedl M. A., “Identifying Mislabeled Training Data”, Journal of Artificial Intelligence Research, 1999, no. 11, 131–167 | DOI | Zbl
[14] Wilson D. R., Martinez T. R., “Reduction Techniques for Instance-Based Learning Algorithms”, Machine Learning, 38:3 (2000), 257–286 | DOI | MR | Zbl
[15] Jankowski N., Grochowski M., “Comparison of Instances Seletion Algorithms I. Algorithms Survey”, Artificial Intelligence and Soft Computing, 2004, 1–6 | DOI
[16] Brighton H., Mellish C., “Advances in Instance Selection for Instance-Based Learning Algorithms”, Data Mining and Knowledge Discovery, 6 (2002), 153–172 | DOI | MR | Zbl
[17] Aggarwal C. C., “Outlier analysis”, Data Mining, Springer International Publishing, 2015, 237–263 | DOI | MR
[18] Zagoruiko N. G., Borisova I. A., Dyubanov V. V., Kutnenko O. A., “Methods of recognition based on the function of rival similarity”, Pattern Recognition and Image Analysis, 18:1 (2008), 1–6 | DOI
[19] Zagoruiko N. G., Kognitivnyi analiz dannykh, Akademicheskoe izd-vo GEO, Novosibirsk, 2013, 186 pp.
[20] Zagoruiko N. G., Prikladnye metody analiza dannykh i znanii, Izd. IM SO RAN, Novosibirsk, 1999, 270 pp.
[21] Zagoruiko N. G., Borisova I. A., Kutnenko O. A., Dyubanov V. V., “Postroenie szhatogo opisaniya dannykh s ispolzovaniem funktsii konkurentnogo skhodstva”, Sibirskii zhurnal industrialnoi matematiki, KhVI:1(53) (2013), 29–41
[22] Subbotin S. A., “Kompleks kharakteristik i kriteriev sravneniya obuchayuschikh vyborok dlya resheniya zadach diagnostiki i raspoznavaniya obrazov”, Matematichni mashini i sistemi, 2010, no. 1, 25–39
[23] Breast Cancer Wisconsin (Diagnostic) Data Set, (accessed July 2016) http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
[24] Pima Indians Diabetes Data Set, (accessed July 2016) https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
[25] Parkinsons Data Set, (accessed July 2016) https://archive.ics.uci.edu/ml/datasets/Parkinsons
[26] Wilson D. R., Martinez T. R., “Reduction Techniques for Instance-Based Learning Algorithms”, Machine learning, 38:3 (2000), 257–286 | DOI | MR | Zbl
[27] Keinosuke Fukunaga, Introduction to statistical pattern recognition, Academic Press, 1972 | MR