Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_1_a0, author = {A. V. Korshakov}, title = {Brain-computer interface systems based on the near-infrared spectroscopy}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {84--129}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a0/} }
A. V. Korshakov. Brain-computer interface systems based on the near-infrared spectroscopy. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 1, pp. 84-129. http://geodesic.mathdoc.fr/item/MBB_2018_13_1_a0/
[1] A. Frolov, P. Bobrov, O. Mokienko, D. Husek, L. Chernikova, R. Korshakov, A. Konovalov, “Sources of EEG activity most relevant to performance of brain-computer interface based on motor imagery”, Neural Network World, 22:1 (2012), 21–37 | DOI | DOI
[2] J. A. Tavada, M. Lesho, M. J. Tierney, “Keeping Watch on Glucose”, IEEE. Spectrum, 2002, 52–57
[3] V. A. Fesechko, Kh. A. Afana Luai, V. V. Romanov, A. A. Elizarov, “Analizator infrakrasnogo pogloscheniya dlya neinvazivnogo izmereniya kontsentratsii glyukozy v krovi”, Elektronika i svyaz, 2009, no. 2, Tematicheskii vypusk «Elektronika i nanotekhnologii», 230–235
[4] H. Ishizawa, A. Muro, T. Takano, K. Honda, H. Kanai, “Non-invasive blood glucose measurement based on ATR infrared spectroscopy”, SICE Annual Conference, 2008, 321–324
[5] J. L. Smith, The Pursuit of Noninvasive Glucose, 5th Edition, 2017 (data obrascheniya: 01.03.2018) https://www.researchgate.net/publication/317267760_The_Pursuit_of_Noninvasive_Glucose_5th_Edition
[6] O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements”, Clinical Chemistry, 45 (1999), 165–177
[7] G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. F. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Medical Optical Tomography: Functional Imaging and Monitoring, PIE Inst. Adv. Opt. Techn., IS11, SPIE, Bellingham, 1993, 656 pp.
[8] V. V. Tuchin (ed.), Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy, SPIE Milestone Series, MS102, SPIE, Bellingham, 1994, 700 pp.
[9] C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin”, NeuroImage, 85 (2014), 234–244 | DOI | DOI
[10] A. V. Priezzhev, V. V. Tuchin, L. P. Shubochkin, Lazernaya diagnostika v biologii i meditsine, Nauka, M., 1989
[11] fNIRS Analysis Environment User's Manual, (data obrascheniya: 28.02.2018) http://nirx.net/nirscout/
[12] A. Bakker, B. Smith, P. Ainslie, K. Smith, Near-Infrared Spectroscopy, Applied Aspects of Ultrasonography in Humans, ed. Ph. Ainslie, 2012, 65–88
[13] A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, L. Spinelli, “Time domain functional NIRS imaging for human brain mapping”, NeuroImage, 85 (2014), 28–50 | DOI | DOI
[14] S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model”, IEEE Trans. Biomed. Eng., 26:12 (1979), 656–664 | DOI | DOI
[15] C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography”, Review of Scientific Instruments, 73:2 (2002), 429–439 | DOI | DOI
[16] Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging”, Applied Optics Copyright Optical Society of America, 40 (2001), 5755–5769
[17] D. Myers, M. McGraw, M. George, K. Mulier, G. Beilman, “Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin”, CriticalCare, 13:5, Suppl. (2009)
[18] T. E.J. Noponen, K. Kotilahti, I. Nissila, T. Kajava, P. T. Merilainen, “Effects of improper source coupling in frequency-domain near-infrared spectroscopy”, Physics in Medicine and Biology, 55:10 (2010), 2941–2960 | DOI | DOI
[19] S. Punwani, C. E. Cooper, M. Clemence, J. Penrice, P. Amess, J. Thorton, R. J. Ordidge, “Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectroscopy (NIRS) and absolute R2 as determined by magnetic resonance imaging (MRI)”, Adv. Exp. Med. Biol., 413 (1997), 129–137 | DOI | DOI
[20] S. Song, Y. Kobayashi, Masakatsu G. Fujie, “Monte-Carlo Simulation of Light Propagation considering Characteristic of Near-infrared LED and Evaluation on Tissue Phantom”, Procedia CIRP: The First CIRP Conference on Biomanufacturing, v. 5, 2013, 25–30
[21] T. Durduran, R. Choe, W. B. Baker, A. G. Yodh, “Diffuse optics for tissue monitoring and tomography”, Rep. Prog. Phys., 73:076701 (2010), 43
[22] F. Martelli, S. Del Bianco, A. Ismaelli, G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software, SPIE Press, Washington, USA, 2009
[23] A. V. Gorshkov, M. Yu. Kirillin, “Monte Carlo simulation of brain sensing by optical diffuse spectroscopy”, Journal of Computational Science, 3:6 (2012), 498–503 | DOI | DOI
[24] J. B. Jeeva, M. Singh, “Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation”, Computers in Biology and Medicine, 60:1 (2015), 92–99 | DOI | DOI
[25] L. Gagnon, M. A. Yucel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements”, NeuroImage, 59:4 (2012), 3933–3940 | DOI | MR | DOI | MR
[26] A. V. Korshakov, “Obrabotka BIKS signala modifitsirovannym metodom empiricheskikh mod s tselyu vydeleniya gemodinamicheskikh otklikov na tselevoe mentalnoe sostoyanie dlya IMK, kharakterizuyuscheesya spetsificheskim vremenem stanovleniya”, XIII Mezhdunarodnyi mezhdistsiplinarnyi kongress “Neironauka dlya meditsiny i psikhologii”, 2017, 222–223
[27] D. V. Sivukhin, “Pogloschenie sveta i ushirenie spektralnykh linii”, Obschii kurs fiziki, v. IV, Optika, Nauka, M., 2005, 582–583
[28] K. S. Shifrin, Rasseyanie sveta v mutnoi srede, M.–L., Gos. izd-vo tekhniko-teoreticheskoi literatury, 1951, 288 pp.
[29] B. N. Klossovskii, Tsirkulyatsiya krovi v mozgu, ed. B.N. Klossovskii, Medgiz, M., 1951, 371 pp.
[30] A. Cichocki, S. Amari, Adaptive blind signal and image processing: Learning Algorithms and Applications, John Wiley Sons, Ltd, 2002, 564 pp. | MR | MR
[31] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Royal Society. Proc. R. Soc. Lond. A, 1998, 995 | MR | Zbl | MR | Zbl
[32] K. Dzhonson, A. Gai, “Vozdeistvie neioniziruyuschego elektromagnitnogo izlucheniya na biologicheskie sredy i sistemy”, TIIER, 60:6 (1972), 49–79
[33] R. Shmidt, G. Tevs (red.), Fiziologiya cheloveka, v. 2, Mir, M., 1996, 313 pp.
[34] N. Birbaumer, A. R. Murguialday, L. Cohend, “Brain-computer interface in paralysis”, Current Opinion in Neurology, 21 (2008), 634–638 | DOI | DOI
[35] A. A. Frolov, V. Yu. Roschin, “Interfeis mozg-kompyuter. Realnost i perspektivy”, Nauchnaya sessiya MIFI-2008, Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika-2008»: lektsii po neiroinformatike, v. 1, 2008, 82–125
[36] K. K. Ang, C. Guan, “Brain-computer interface in stroke rehabilitation”, Journal of Computing Science and Engineering, 7:2 (2013), 139–146 | DOI | DOI
[37] R. Padmavathi, V. Ranganathan, “A review on EEG based brain computer interface systems”, International Journal of Emerging Technology and Advanced Engineering, 4 (2014)
[38] S. S. Purkayastha, V. K. Jain, H. K. Sardana, “Topical Review: A review of various techniques used for measuring brain activity in brain computer interfaces”, Advance in Electronic and Electric Engineering, 4 (2014), 513–522
[39] N. Birbaumer, L. G. Cohen, “Brain-computer interfaces: communication and restoration of movement in paralysis”, J. Physiol., 579 (2007), 621–636 | DOI | DOI
[40] R. Adams, G. C. Bahr, B. Moreno, “Brain computer interfaces: psychology and pragmatic perspectives for the future”, AISB 2008 Proceedings of the AISB 2008 Symposium on Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas, v. 5, 2008, 1–6 | Zbl | Zbl
[41] A. Zepeda, C. Arias, F. Sengpiel, “Optical imaging of intrinsic signals:recent developments in the methodology and its applications”, Neuroscience Methods, 2004, no. 136, 1–21 | DOI | DOI
[42] G. Xu, X. Li, D. Li, X. Liu, “A DAQ-Device-Based continuous wave near-infrared spectroscopy system for measuring human functional brain activity”, Computational and Mathematical Methods in Medicine, 2014 (2014), 107320 | DOI | DOI
[43] R. K. Almajidy, K. S. Le, U. G. Hofmanna, “Novel near infrared sensors for hybrid BCI applications”, Advanced Microscopy Techniques IV and Neurophotonics II, Proc. SPIE, 9536, 2015, 95361H | DOI | DOI
[44] S. Coyle, T. Ward, C. Markham, “Cerebral Blood Flow Changes related to Motor Imagery, using Near-infrared Spectroscopy (NIRS)”, World Congress on Medical Physics and Biomedical Engineering (2003)
[45] F. Matthews, C. Soraghan, T. Ward, C. Markham, B. Pearlmutter, “Software platform for rapid prototyping of NIRS brain computer interfacing techniques”, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, 4840–4843 | DOI | DOI
[46] J. B. F. Van Erp, F. Lotte, M. Tangermann, “Brain-computer interfaces: Beyond medical applications”, Computer, 45:4 (2012), 26–34 | DOI | DOI
[47] P. D. Bobrov, M. R. Isaev, A. V. Korshakov, V. V. Oganesyan, J. V. Kerechanin, A. I. Popodko, A. A. Frolov, “Sources of electrophysiological and foci of hemodynamic brain activity most relevant for controlling a hybrid brain-Computer interface based on classification of EEG patterns and near-infrared spectrography signals during motor imagery”, Human Physiology, 42:3 (2016), 241–251 | DOI | DOI
[48] G. Neuper C. Pfurtscheller, “Motor imagery and direct brain-computer communication”, Proc. IEEE Neural Eng., 89 (2001), 1123
[49] L. Citi, R. Poli, C. Cinel, F. Sepulveda, “P300-Based BCI Mouse With GeneticallyOptimized Analogue Control”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16:1 (2008) | DOI | DOI
[50] L. M. Ward, R. T. Aitchison, M. Tawse, A. J. Simmers, U. Shahani, “Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS”, PloS ONE, 10:4 (2015), e0125012 | DOI | DOI
[51] N. N. Soe, M. Nakagawa, “Chaotic properties of hemodynamic response in functional near infrared spectroscopic measurement of brain activity”, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 2:3 (2008), 95–104
[52] T. Limongi, G. Di Sante, M. Ferrari, V. Quaresima, “Detecting Mental Calculation Related Frontal Cortex Oxygenation Changes for Brain Computer Interface Using Multi-Channel Functional Near Infrared Topography”, International Journal of Bioelectromagnetism, 11:2 (2009), 86–90
[53] K. K. Ang, J. Yu, C. Guan, “Extracting and selecting discriminative features from high density NIRS-based BCI for numerical cognition”, The 2012 International Joint Conference on Neural Networks, IJCNN, 2012, 1–6
[54] F. A. Fishburn, M. E. Norr, A. V. Medvedev, C. J. Vaidya, “Sensitivity off NIRS to cognitive state and load”, Frontiers in Human. Neuroscience, 8 (2014), 76 | DOI | DOI
[55] A. Villringer, J. Planck, C. Hock, L. Schlenkofer, U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults”, Neuroscience Letters, 154 (1993), 101–104 | DOI | DOI
[56] G. Matsuda, K. Hiraki, “Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children”, NeuroImage, 29 (2006), 706–711 | DOI | DOI
[57] M. Guirgis, T. Falk, S. Power, S. Blain, T. Chau, “Harnessing physiological responses to improve NIRS-based brain-computer interface performance”, Proc. ISSNIP Biosignals Biorobotics Conf., 2010, 59–62
[58] C. Herff, D. Heger, F. Putze, C. Guan, T. Schultz, “Self-paced BCI with NIRS based on speech activity”, International BCI Meeting (2013)
[59] W. S. Li, Y. T. Li, “FOMs of Consciousness Measurement”, Proceedings of the 2015 International Conference on Artificial Intelligence and Industrial Engineering, 2015
[60] S. Hori, M. Mori, M. Takehisa, S. Akitoshi, “Development and inspection of NIRS-Based real-time feedback BCI system: Fusion of Neuroscience and Media-Art”, Transactions of Japanese Society for Medical and Biological Engineering, 51, Suppl. (2013), R-90 | DOI | DOI
[61] V. Kaiser, G. Bauernfeinda, T. Kaufmannb, A. Kreilingera, A. Kublerb, C. Neupera, “Cortical Effects of User Learning in a Motor-Imagery BCI Training”, International Journal of Bioelectromagnetism, 13:2 (2011), 60–61
[62] H. J. Hwang, J. H. Lim, D. W. Kim, C. H. Ima, “Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces”, Journal of Biomedical Optics, 19:7 (2014) | DOI | MR | Zbl | DOI | MR | Zbl
[63] C. N. Gupta, R. Palaniappan, “Using EEG and NIRS for brain-computer Interface and Cognitive Performance Measures: A Pilot Study”, International Journal of Cognitive Performance Support, 1:1 (2013), 69 | DOI | Zbl | DOI | Zbl
[64] N. Naseer, K.-S. Honga, “Classification of functional near-infrared spectroscopy signalscorresponding to the right- and left-wrist motor imagery fordevelopment of a brain-computer interface”, Neuroscience Letters, 553 (2013), 84–89 | DOI | DOI
[65] J. N. Mak, J. R. Wolpaw, “Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects”, IEEE Rev. Biomed. Eng., 2 (2009), 187–199 | DOI | MR | DOI | MR
[66] J. M. Belda-Lois, S. Mena-del Horno, I. Bermejo-Bosch, J. C. Moreno, J. L. Pons, D. Farina, M. Losa, M. Molinari, F. Tamburella, A. Ramos, A. Caria, T. SolisEscalante, C. Brunner, M. Rea, “Rehabilitation of gait after stroke: a review towards a top-down approach”, Journal of NeuroEngineering and Rehabilitation, 8 (2011), 66 | DOI | DOI
[67] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas et al., “Think to move: a neuromagnetic braincomputer interface (BCI) system for chronic stroke”, Stroke, 39 (2008), 910–917 | DOI | DOI
[68] C. Soraghan, F. Matthews, C. Markham, B. A. Pearlmutter, R. O'Neill, T. E. Ward, “A 12- Channel, real-time near-infrared spectroscopy instrument for brain-computer interface applications”, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2008), 5648–5651
[69] N. Birbaumer, F. Piccione, S. Silvoni, M. Wildgruber, “Ideomotor silence: the case of complete paralysis and brain-computer interfaces (BCI)”, Psychological Research, 76 (2012), 183–191 | DOI | DOI
[70] L. H. Bi, X. A. Fan, Y. I. Liu, “EEG-Based-Controlled Mobile Robots”, A Survey IEEE Transactions on human-machine systems, 43:2 (2003)
[71] T. E. Ward, C. J. Soraghan, F. Matthews, C. Markham, “A Concept for Extending the Applicability of Constraint-Induced Movement Therapy through Motor Cortex Activity Feedback Using a Neural Prosthesis”, Computational Intelligence and Neuroscience, 2007, 51363
[72] B. T. Volpe, M. Ferraro, D. Lynch, P. Christos, J. Krol, Ch. Trudel, H. I. Krebs, N. Hogan, “Robotics and other devices in the treatment of patients recovering from stroke”, Current Neurology and Neuroscience Reports, 5:6 (2005), 465–470 | DOI | DOI
[73] M. J. Johnson, “Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke”, Journal of NeuroEngineering and Rehabilitation, 3 (2006), 29 | DOI | Zbl | DOI | Zbl
[74] L. Dipietro, M. Ferraro, J. J. Palazzolo, H. I. Krebs, VolpeB. T., N. Hogan, “Customized interactive robotic treatment for stroke: EMG-triggered therapy”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13:3 (2005), 325–334 | DOI | DOI
[75] A. Portelli, I. Daly, M. Spencer, S. Nasuto, “Low Cost Brain Computer Interface First Results”, Proceedings of the 5th International Brain-Computer Interface Conference (September 22–24, 2011, Graz University of Technology, Austria), 2011, 320–323 (data obrascheniya: 10.03.2018) https://www.tugraz.at/fileadmin/user_upload/Institute/INE/Proceedings/Proceedings_BCI_Conference_2011_neu.pdf
[76] B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelsteinn, C. M. Diels, M. L. Aisen, “Robot training enhanced motor outcome in patients with stroke maintained over 3 years”, Neurology, 53:8 (1999), 1874–1876 | DOI | DOI
[77] M. Ferraro, J. J. Palazzolo, J. Krol, H. I. Krebs, N. Hogan, B. T. Volpe, “Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke”, Neurology, 61:11 (2003), 1604–1607 | DOI | DOI
[78] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. Ch. Carrozza, P. Dario, G. Minuco, “Robotic techniques for upper limb evaluation and rehabilitation of stroke patients”, IEEE Transactions on Neural Systems and Rehabilitation Engineering., 13:3 (2005), 311–324 | DOI | DOI
[79] K. Tai, T. Chau, “Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface”, Journal of NeuroEngineering and Rehabilitation., 6 (2009), 39 | DOI | DOI
[80] K. Akilandeswari, G. M. Nasira, “Swarm Optimized Feature Selection of EEG Signals for Brain-Computer Interface”, International Journal of Computational Intelligence and Informatics, 4:1 (2014)
[81] R. Sitaram, H. Zhang, C. Guan, M. Manoj Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface”, NeuroImage, 34 (2007), 1416–1427 | DOI | DOI
[82] Y. Tomita, F. B. Vialatte, G. Dreyfus, Y. Mitsukura, H. Bakardjian, A. Cichocki, “Bimodal BCI using simultaneously NIRS and EEG”, IEEE Trans. Biomed. Eng., 61:4 (2014), 1274–1284 | DOI | DOI
[83] G. Bauernfeind, R. Leeb, S. C. Wriessnegger, G. Pfurtscheller, “Development set-up and first results for a one-channel near-infrared spectroscopy system”, Biomed. Tech. (Berl.), 53:1 (2008), 36–43 | DOI | DOI
[84] M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in visual and motor cortices during functional stimulation: a near-infrared spectroscopy study”, NeuroImage, 2002, no. 16, 704–712 | DOI | DOI
[85] S. M. Coyle, T. E. Ward, C. M. Markham, “Brain-computer nterface using a simplified functional near-infrared spectroscopy system”, J. Neural. Eng., 4 (2007), 219–226 | DOI | DOI
[86] S. D. Power, T. H. Falk, T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain nearinfrared spectroscopy”, Neural. Eng., 7 (2008)
[87] H. Ogata, T. Mukai, T. Yagi, “A study on the frontal cortex in cognitive tasks using nearinfrared spectroscopy”, Proc. IEEE EMBS, 2007, 4731–4734
[88] T. H. Falk, M. Guirgis, S. Sarah Power, T. Chau, “Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19:2 (2011) | DOI | Zbl | DOI | Zbl
[89] S. D. Power, A. Kushki, T. Chau, “Intersession consistency of single-trial classification of the prefrontal response to mental arithmetic and the no-control state by NIRS”, PLoS ONE, 7:7 (2012) | DOI | DOI
[90] N. D. Tam, G. Zouridakis, “Optical imaging of motor cortical hemodynamic response to directional arm movements using near-infrared spectroscopy”, International Journal of Biological Engineering, 3:2 (2013), 11–17
[91] K. S. Hong, N. Naseer, Y. H. Kimc, “Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI”, Neuroscience Letters, 587 (2015), 87–92 | DOI | DOI
[92] K. Yanagisawa, H. Sawai, H. Tsunashima, “Development of NIRS-BCI system using Perceptron”, 12th International Conference on Control, Automation and Systems (ICCAS 2012) (17–21 Oct. Korea), 2012, 17–21
[93] S. M. Coyle, T. E. Ward, C. M. Markham, G. McDarby, “On the suitability of near-infrared (NIR) systems for next generation brain-computer interfaces”, Physiol. Meas., 25 (2004), 815–822 | DOI | DOI
[94] M. Strait, M. Scheutz, “Building a literal bridge between robotics and neuroscience using functional near infrared spectroscopy”, HRI '14: Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction (Bielefeld, Germany, March 03–06, 2014) | DOI | DOI
[95] K. K. Ang, K. S. G. Chua, K. S. Phua, C. Wang, Z. Y. Chin, C. W. K. Kuah, C. Guan, “A Randomized controlled trial of EEG-based motor imagery Brain-Computer Interface robotic rehabilitation for stroke”, Clinical EEG and Neuroscience, 46:4 (2015), 310–320 | DOI | DOI
[96] D. Brauchle, M. Vukelic, R. Bauer, A. Ghabaraghi, “Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation”, Frontiers in Human Neuroscience, 9 (2015), 564 | DOI | DOI
[97] J. H. Lee, J. Ryu, F. A. Jolesz, Z. H. Cho, S. S. Yoo, “Brain-machine interface via realtime fMRI: preliminary study on thoughtcontrolled robotic arm”, Neurosci. Lett., 450:1 (2009), 1–6 | DOI | DOI
[98] D. J. McFarland, J. R. Wolpaw, “Brain-computer interface operation of robotic and prosthetic devices”, Computer, 41 (2010), 52–56 | DOI | DOI
[99] G. R. Muller-Putz, R. Scherer, G. Pfurtscheller, R. Rupp, “EEG-based neuroprosthesis control: a step towards clinical practice”, Neurosci. Lett., 382:1–2 (2005), 169–174 | DOI | DOI
[100] F. Galan, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, J. del R. Millan, “A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots”, Clin. Neurophysiol., 9:119 (2008), 2159–2169 | DOI | DOI
[101] K. Tanaka, K. Matsunaga, H. O. Wang, “Electroencephalogrambased control of an electric wheelchair”, IEEE Trans. Robotics, 21 (2005), 762–766 | DOI | DOI
[102] D. Aminaka, S. Makino, T. M. Rutkowski, “SSVEP Brain-computer Interface using Green and Blue Lights”, 10th AEARU Workshop on Computer Science and Web Technology: The Association of East Asian Research Universities (AEARU), University of Tsukuba, Tsukuba, Japan, 2015
[103] D. Aminaka, S. Makino, T. M. Rutkowski, “Chromatic SSVEP BCI paradigm targeting the higher frequency EEG Responses”, Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, 2014, 1–7 | DOI | DOI
[104] D.-J. Kim, Z. Wang, N. Paperno, A. Behal, “System design and implementation of UCFMANUS-An intelligent assistive robotic manipulator”, IEEE/ASME Transactions on Mechatronics, 19:1 (2014), 225–237 | DOI | DOI
[105] K. M. Tsui, D. J. Feil-Seifer, M. J. Mataric, H. A. Yanco, “Performance Evaluation Methods for Assistive Robotic Technology”, Performance Evaluation and Benchmarking of Intelligent Systems, eds. Madhavan R., Tunstel E., Messina E., Springer, 2009, 41–66 | DOI | DOI
[106] K. Choi, A. Cichocki, “Control of a wheelchair by motor imagery in real time”, Intelligent Data Engineering and Automated Learning —IDEAL 2008, Lecture Notes in Computer Science, 5326, 2008, 330–337 | DOI | DOI
[107] S. V. Kotov, L. G. Turbina, P. D. Bobrov, A. A. Frolov, O. G. Pavlova, M. E. Kurganskaya, E. V. Biryukova, “Reabilitatsiya bolnykh, perenesshikh insult, s pomoschyu bioinzhenernogo kompleksa «interfeis mozg-kompyuter + ekzoskelet»”, Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2014, no. 12, 66–72
[108] R. Kh. Lyukmanov, O. A. Mokienko, L. A. Chernikova, A. V. Chervyakov, N. A. Suponeva, M. A. Piradov, “Interfeis mozg-kompyuter v reabilitatsii bolnykh s postinsultnym parezom v ruke: pervyi opyt klinicheskogo primeneniya v Rossii”, Izbrannye voprosy neiroreabilitatsii, Materialy VII mezhdunarodnogo kongressa «Neiroreabilitatsiya-2015» (Moskva, 2015)
[109] N. A. Babushkina, E. V. Biryukova, P. D. Bobrov, Ya. V. Kerechanin, M. E. Kurganskaya, A. A. Frolov, “Opredelenie repertuara dvizhenii mnogosustavnogo ekzoskeletaruki, upravlyaemogo interfeisom mozg-kompyuter (IMK)”, Izbrannye voprosy neiroreabilitatsii, Materialy VII mezhdunarodnogo kongressa «Neiroreabilitatsiya-2015» (Moskva, 2015)
[110] C. B. Kotov, L. G. Turbina, P. D. Bobrov, A. A. Frolov, O. G. Pavlova, M. E. Kurganskaya, E. V. Biryukova, Materialy VII mezhdunarodnogo kongressa «Neiroreabilitatsiya-2015» (Moskva, 2015)
[111] A. A. Frolov, E. V. Biryukova, P. D. Bobrov, A. K. Platonov, V. E. Pryanichnikov, “Biologicheski adekvatnye printsipy upravleniya ekzoskeletonom ruki cheloveka”, Informatsionno-izmeritelnye i upravlyayuschie sistemy, 11:1 (2013), 12–19
[112] K. Tumanov, R. Goebel, R. Mockel, B. Sorger, G. Weiss, “fNIRS-based BCI for robot Control”, Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015 (Istanbul, Turkey, May 04–08, 2015)
[113] R. Lakshmi, T. V. Prasad, V. Chandra Prakash, “Survey on EEG signal processing methods”, International Journal of Advanced Research in Computer Science and Software Engineering, 4:1 (2014) | DOI | MR | DOI | MR
[114] J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, A. Kubler, “AnMEG-basedbrain-computerinterface (BCI)”, NeuroImage, 36:3 (2007), 581–593 | DOI | DOI
[115] F. Lopes da Silva, “EEG and MEG: Relevance to Neuroscience”, Neuron, 80 (2013), 1112–1128 | DOI | DOI
[116] N. M. Pankratova, M. N. Ustinin, R. R. Linas, “Obnaruzhenie patologicheskoi aktivnosti golovnogo mozga po dannym magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 679–690 | DOI | DOI
[117] A. V. Korshakov, M. A. Polikarpov, M. N. Ustinin, V. V. Sychev, S. D. Rykunov, S. P. Naurzakov, A. P. Grebenkin, V. Ya. Panchenko, “Registratsiya i analiz tochnykh chastotnykh EEG/MEG otklikov auditornoi kory golovnorgo mozga cheloveka v otvet na monauralnuyu stimulyatsiyu zvukom s fiksirovannymi chastotnymi sostavlyayuschimi”, Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 296–308 | DOI | DOI
[118] M. N. Ustinin, M. A. Polikarpov, A. N. Pankratov, S. D. Rykunov, S. P. Naurzakov, A. P. Grebenkin, V. Ya. Panchenko, “Sravnitelnyi analiz eksperimentalnykh dannykh magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 6:1 (2011), 63–70 | DOI | MR | DOI | MR
[119] M. Jas, D. A. Engemann, Y. Bekhti, F. Raimondo, A. Gramfort, “Autoreject: Automated artifact rejection for MEG and EEG data”, NeuroImage, 159 (2017), 417–429 | DOI | DOI
[120] M. C. Schaeffer, E. Labyt, V. Rohu, N. Tarrin, I. Vergara, S. Cokgungor, A. Eliseyev, G. Charvet, C. M. A. L. Benabid, T. Aksenova, “Hand movement decoding from magnetoencephalographic signals for BCI applications”, Neurophysiologie Clinique/Clinical Neurophysiology, 46:2 (2016), 104 | DOI | DOI
[121] M. N. Ustinin, V. V. Sychev, K. D. Walton, R. R. Llinas, “New Methodology for the Analysis and Representation of Human Brain Function: MEGMRIAn”, Mathematical Biology and Bioinformatics, 9:2 (2014), 464–481 | DOI | DOI
[122] S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sychev, R. R. Linas, “Kompleks programm dlya rascheta partsialnykh spektrov golovnogo mozga cheloveka”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 127–140 | DOI | DOI
[123] M. R. Daliri, “A hybrid method for the decoding of spatial attention using the MEG brain signals”, Biomedical Signal Processing and Control, 10 (2014), 308–312 | DOI | DOI
[124] H. Zarshenas, M. Bamdad, H. Grailu, A. A. Shakoori, “Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface”, World Academy of Science, Engineering and Technology. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7:6 (2013)
[125] R. R. Yager, “On ordered weighted averaging aggregation operators in multi criteria decision making”, Man and Cybernetics, 18 (1988), 183–190 | DOI | MR | Zbl | DOI | MR | Zbl
[126] M. J. Khan, K. S. Hong, N. Naseer, M. R. Bhutta, S. H. Yoon, “Hybrid EEG-NIRS BCI for rehabilitation using different-source brain signals”, Proc. of the SICE Annual Conference \date September 9–12, 2014, Hokkaido University, Sapporo, Japan, 2014
[127] M. J. Khan, M. J. Hong, K. S. Hong, “Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface”, Frontiers in Human Neuroscience Methods, 8 (2014), 244
[128] M. J. Khan, K. S. Hong, N. Naseer, M. R. Bhutta, “Multi-decision detection using EEGNIRS based hybrid Brain-Computer Interface (BCI)”, 20th Annual Meeting of the Organization for Human Brain Mapping (OHMB) (2014)
[129] S. Fazli, J. Mehnert, J. Steinbrink, G. Curio, A. Villringer, K. R. Muller, B. Blankertz, “Enhanced performance by a hybrid NIRS-EEG brain computer interface”, NeuroImage, 59 (2012), 519–529 | DOI | DOI
[130] B. Koo, H. G. Lee, Y. Nam, H. Kang, C. S. Koh, H. C. Shin, S. Choi, “A hybrid NIRSEEG system for self-paced brain computer interface with online motor imagery”, Neuroscience Methods, 244 (2015), 26–32 | DOI | DOI
[131] R. Leeb, H. Sagha, R. Chavarriaga, R. Del, J. Millan, “Multimodal fusion of muscle and brain signals for a hybrid-BCI”, Conf. Proc. IEEE Eng. Med. Biol., 2010, 4343–4346 | DOI | DOI
[132] G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R. Scherer, T. O. Zander, G. Mueller-Putz, C. Neuper, N. Birbaumek, “The hybrid BCI”, 2010, 4, 30
[133] S. Fazli, S. Dahne, W. Samek, F. Biemann, K. R. Muller, “Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces”, Proceedings of the IEEE, 103:6 (2015) | DOI | DOI
[134] C. J. Soraghan, F. Matthews, D. Kelly, C. Markham, B. A. Pearlmutter, R. O'Neill, “A Dual-channel optical Brain-Computer Interface in a gaming environment”, Proceedings of 9th International Conference on Computer Games: AI, Animation, Mobile, Educational and Serious Games (CGAMES), Dublin Institute of Technology, Ireland, 2006
[135] M. Strait, C. Canning, M. Scheutz, “Limitations of NIRS-Based BCI for realistic applications in human-computer interaction”, Proceedings of the Fifth International Brain-Computer Interface Meeting, 2013, 002 | DOI | DOI
[136] G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, NeuroImage, 17 (2002), 719–731 | DOI | DOI
[137] H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults”, NeuroImage, 12 (2000), 623–639 | DOI | DOI
[138] F. Scarpa, S. Cutini, P. Scatturin, R. Dell'Acqua, G. Sparacino, “Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS)”, Optics Express, 18:25 (2010), 26550–26568 | DOI | DOI
[139] T. Q. Duong, D. S. Kim, K. Ugurbil, S. G. Kim, “Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response”, Magn. Reson. Med., 44 (2000), 231–242 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI
[140] R. S. Menon, S. Ogawa, X. Hu, J. S. Strupp, P. Andersen, K. Ugurbil, “BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals”, Magn. Reson. Med., 33 (1995), 453–459 | DOI | DOI
[141] D. Malonek, A. Grinvald, “Vascular regulation at sub millimeter range. Sources of intrinsic signals for high resolution optical imaging”, Adv. Exp. Med. Biol., 413 (1996), 215–220 | DOI | DOI
[142] I. Vanzetta, A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging”, Science, 286 (1999), 1555–1558 | DOI | DOI
[143] A. F. Cannestra, N. Pouratian, S. Y. Bookheimer, N. A. Martin, D. P. Beckerand, A. W. Toga, “Temporal spatial differences observed by functional MRI and human intraoperative optical imaging”, Cereb. Cortex, 11 (2001), 773–782 | DOI | DOI
[144] M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses”, NeuroImage, 8 (1998), 69–78 | DOI | DOI
[145] S. Punwani, R. J. Ordidge, C. E. Cooper, P. Amess, M. Clemence, “MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]-Correlation with near infrared spectroscopy (NIRS)”, NMR Biomed., 11 (1998), 281–289 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI
[146] R. Sitaram, A. Caria, N. Birbaumer, “Hemodynamic brain-computer interfaces for communication and rehabilitation”, Neural Networks, 2009 | Zbl | Zbl
[147] J. C. Ye, S. Tak, K. E. Jang, J. Jung, J. Jang, “NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy”, NeuroImage, 44:2 (2009), 428–447 | DOI | DOI
[148] R. Hoge, M. Franceschini, R. Covolan, T. Huppert, J. Mandeville, D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI”, NeuroImage, 25:3 (2005), 701–707 | DOI | DOI
[149] N. Logothetis, “The underpinnings of the BOLD functional magnetic resonance imaging signal”, Neurosci., 23:10 (2003), 3963–3971 | DOI | DOI
[150] D. Benaron, S. Hintz, A. Villringer, D. A. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. van Houten, E. Kermit et al, “Noninvasive functional imaging of human brain using light”, J. Cereb. Blood Flow Metab., 20 (2000), 469–477 | DOI | DOI
[151] D. A. Boas, M. A. O'Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis”, Appl. Opt., 36 (1997), 75–92 | DOI | DOI
[152] D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, “Imaging the body with diffuse optical tomography”, IEEE Signal Process. Mag., 18:6 (2001), 57–75 | DOI | DOI
[153] D. Boas, G. Strangman, J. Culver, R. Hoge, G. Jasdzewski, R. Poldrack, B. Rosen, J. Mandeville, Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?, Phys. Med. Biol., 48:15 (2003), 2405–2418 | DOI | DOI
[154] D. Boas, A. Dale, M. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy”, NeuroImage, 23 (2004), 275–288 | DOI | DOI
[155] R. Hoge, S. Diamond, M. Franceschini, D. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans”, NeuroImage, 29:2 (2006), 368–382 | DOI | DOI
[156] D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography”, Opt. Lett., 20:5 (1995), 426–428 | DOI | DOI
[157] A. Siegel, J. Culver, J. Mandeville, D. Boas, “Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation”, Phys. Med. Biol., 48:10 (2003), 1391–1403 | DOI | DOI
[158] J. H. Theodore, S. G. Diamond, M. A. Franceschini, D. A. Boas, “Homer: a review of timeseries analysis methods for near-infrared spectroscopy of the brain”, Applied Optics, 48:10 (2009), D280–D298 | DOI | DOI
[159] HOMER2 Download Page, (data obrascheniya: 28.02.2018) http://optics.martinos.org/research/software/
[160] Z. Haihong, G. Cuntai, “A Kernel-based signal localization method for NIRS Braincomputer Interfaces”, 18th International Conference on Pattern Recognition, ICPR'06, v. 1, 2006, 1158–1161
[161] J. Sun, “Tail probabilities of the maxima of Gaussian random fields”, Ann. Probab., 21:1 (1993), 34–71 | DOI | MR | Zbl | DOI | MR | Zbl
[162] J. Sun, C. Loader, “Simultaneous confidence bands for linear regression and smoothing”, Ann. Stat., 22:3 (1994), 1328–1345 | DOI | MR | Zbl | DOI | MR | Zbl
[163] X. Cui, S. Bray, A. L. Reiss, “Speeded Near Infrared Spectroscopy (NIRS) response detection”, PloS ONE, 5:11 (2010) | DOI | DOI
[164] M. A. Franceschini, S. Fantini, V. Toronov, M. E. Filiaci, E. Gratton, “Cerebral hemodynamics measured by Near-Infrared Spectroscopy at rest and during motor activation”, Proceedings of the Optical Society of America In Vivo Optical Imaging Workshop, 2000, 73–80
[165] X. Cui, S. Bray, D. M. Bryant, G. H. Glover, A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks”, NeuroImage, 54:4 (2011), 2808–2821 | DOI | DOI
[166] A. V. Medvedev, S. V. Borisov, A. H. Gandjbakhche, J. VanMeter, ““Seeing” electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal”, Biomedical Optics, 15:6 (2010) | DOI | Zbl | DOI | Zbl
[167] J. Huang, S. Wang, S. I Jia, D. Mo, H. C. Chen, “Cortical dynamics of semantic processing during sentence comprehension: evidence from event-related optical signals”, Plos ONE, 8:8 (2013)
[168] A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, J. VanMetera, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition”, Journal of Biomedical Optics, 16:1 (2011) | DOI | Zbl | DOI | Zbl
[169] A. M. Chiarelli, G. L. Romani, A. Merla, “Fast optical signals in the sensorimotor cortex: General Linear Convolution Model applied to multiple source-detector distance-based data”, NeuroImage, 85 (2014), 245–254 | DOI | DOI
[170] N. D. Tam, G. Zouridakis, “Temporal decoupling of oxy- and deoxy-hemoglobin hemodynamic responses detected by functional near-infrared spectroscopy (fNIRS)”, Journal of Biomedical Engineering and Medical Imaging, 1:2 (2014), 18–28 | DOI | DOI
[171] F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems”, Nature Reviews Neuroscience, 8 (2007), 577–581 | DOI | DOI
[172] P. Kim, M. Puoris'haag, D. Cote, C. P. Lin, S. H. Yun, “In vivo confocal and multiphoton microendoscopy”, J. of Biomedical Optics, 13:1 (2008) | DOI | DOI
[173] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation”, Optics Express, 17:16 (2009), 11 | DOI | DOI
[174] S. K. Mohanty, R. K. Reinscheid, X. Liu, N. Okamura, T. B. Krasieva, M. W. Berns, “In-Depth Activation of Channelrhodopsin-2 Sensitized Excitable Cells with High Spatial Resolution Using Two-Photon Excitation with a Near-Infrared Laser Microbeam”, Biophysical Journal, 95 (2008), 11 | DOI | DOI
[175] C. L. Ebbesen, H. Bruus, “Analysis of laser-induced heating in optical neuronal guidance”, Journal of Neuroscience Methods, 209 (2012), 168–177 | DOI | DOI
[176] A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, J. Kas, “Guiding neuronal growth with light”, PNAS, 2002 | DOI | DOI
[177] I. V. Ilina, A. V. Ovchinnikov, D. S. Sitnikov, O. V. Chefonov, M. B. Agranat, Yu. V. Khramova, M. L. Semenova, “Microsurgery of cell membrane with femtosecond laser pulses for cell fusion and optical injection”, Advanced Laser Technologies, 2012 | DOI | DOI
[178] N. Birbaumer, G. Gallegos-Ayala, M. Wildgruber, S. Silvoni, S. R. Soekadar, “Direct brain control and communication in paralysis”, Brain Topography, 27:1 (2014), 4–11 | DOI | DOI