Phenotypic variability of bacterial cell cycle: mathematical model
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017), pp. t23-t44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling results demonstrating mechanisms of different cell phenotypes appearance in a genetically homogenous population using the bacterial cell cycle model are presented. It was demonstrated that phenotypic variability represents an internal, immanent property of bacteria. The basis of this phenomenon is universal non-linear properties of the conjugated transcription-translation system that controls all cellular processes. Phenotypic variability occurs in a simple, deterministic, self-reproducing system under the uniform transmission of the structural components to the daughter cells during division and in the absence of any special control mechanisms of molecular-genetic processes and enzymatic reactions.
@article{MBB_2017_12_a2,
     author = {V. A. Likhoshvai and T. M. Khlebodarova},
     title = {Phenotypic variability of bacterial cell cycle: mathematical model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t23--t44},
     publisher = {mathdoc},
     volume = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_a2/}
}
TY  - JOUR
AU  - V. A. Likhoshvai
AU  - T. M. Khlebodarova
TI  - Phenotypic variability of bacterial cell cycle: mathematical model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - t23
EP  - t44
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_a2/
LA  - en
ID  - MBB_2017_12_a2
ER  - 
%0 Journal Article
%A V. A. Likhoshvai
%A T. M. Khlebodarova
%T Phenotypic variability of bacterial cell cycle: mathematical model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P t23-t44
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_a2/
%G en
%F MBB_2017_12_a2
V. A. Likhoshvai; T. M. Khlebodarova. Phenotypic variability of bacterial cell cycle: mathematical model. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017), pp. t23-t44. http://geodesic.mathdoc.fr/item/MBB_2017_12_a2/

[1] Ferrell J. E. Jr., “Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability”, Curr. Opin. Cell. Biol., 14 (2002), 140–148 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0955-0674(02)00314-9'>10.1016/S0955-0674(02)00314-9</ext-link>

[2] Angeli D., Ferrell J. E. Jr., Sontag E. D., “Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems”, Proc. Natl. Acad. Sci. USA, 101 (2004), 1822–1827 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0308265100'>10.1073/pnas.0308265100</ext-link>

[3] Ozbudak E. M., Thattai M., Lim H. N., Shraiman B. I., Van Oudenaarden A., “Multistability in the lactose utilization network of Escherichia coli”, Nature, 427:6976 (2004), 737–740 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature02298'>10.1038/nature02298</ext-link>

[4] Smits W. K., Kuipers O. P., Veening J. W., “Phenotypic variation in bacteria: the role of feedback regulation”, Nat. Rev. Microbiol., 4:4 (2006), 259–271 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrmicro1381'>10.1038/nrmicro1381</ext-link>

[5] Dubnau D., Losick R., “Bistability in bacteria”, Mol. Microbiol., 61 (2006), 564–572 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.2006.05249.x'>10.1111/j.1365-2958.2006.05249.x</ext-link>

[6] Piggot P., “Epigenetic switching: bacteria hedge bets about staying or moving”, Curr. Biol., 20:11 (2010), R480–482 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cub.2010.04.020'>10.1016/j.cub.2010.04.020</ext-link>

[7] Avendaño M. S., Leidy C., Pedraza J. M., “Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops”, Nat. Commun., 4 (2013), 2605 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms3605'>10.1038/ncomms3605</ext-link>

[8] Kaern M., Elston T. C., Blake W. J., Collins J. J., “Stochasticity in gene expression: from theories to phenotypes”, Nat. Rev. Genet., 6 (2005), 451–464 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrg1615'>10.1038/nrg1615</ext-link>

[9] Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I., “Positive feedback and noise activate the stringent response regulator rel in mycobacteria”, PLoS One, 3:3 (2008), e1771 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0001771'>10.1371/journal.pone.0001771</ext-link>

[10] To T. L., Maheshri N., “Noise can induce bimodality in positive transcriptional feedback loops without bistability”, Science, 327:5969 (2010), 1142–1145 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1178962'>10.1126/science.1178962</ext-link>

[11] Zheng X. D., Yang X. Q., Tao Y., “Bistability, probability transition rate and first-passage time in an autoactivating positive-feedback loop”, PLoS One, 6:3 (2011), e17104 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0017104'>10.1371/journal.pone.0017104</ext-link>

[12] Shu C. C., Chatterjee A., Dunny G., Hu W. S., Ramkrishna D., “Bistability versus bimodal distributions in gene regulatory processes from population balance”, PLoS Comput. Biol., 7:8 (2011), e1002140 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1002140'>10.1371/journal.pcbi.1002140</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2845065'>2845065</ext-link>

[13] Ghosh S., Banerjee S., Bose I., “Emergent bistability: Effects of additive and multiplicative noise”, Eur. Phys. J. E Soft. Matter., 35:11 (2012) <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epje/i2012-12011-4'>10.1140/epje/i2012-12011-4</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1274.54061'>1274.54061</ext-link>

[14] Thomas P., Popović N., Grima R., “Phenotypic switching in gene regulatory networks”, Proc. Natl. Acad. Sci. USA, 111:19 (2014), 6994–6999 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1400049111'>10.1073/pnas.1400049111</ext-link>

[15] Casadesús J., Low D. A., “Programmed heterogeneity: epigenetic mechanisms in bacteria”, J. Biol. Chem., 288 (2013), 13929–13935 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.R113.472274'>10.1074/jbc.R113.472274</ext-link>

[16] Stewart E. J., Madden R., Paul G., Taddei F., “Aging and death in an organism that reproduces by morphologically symmetric division”, PLoS Biol., 3:2 (2005), e45 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.0030045'>10.1371/journal.pbio.0030045</ext-link>

[17] Ghosh S., Sureka K., Ghosh B., Bose I., Basu J., Kundu M., “Phenotypic heterogeneity in mycobacterial stringent response”, BMC Syst. Biol., 5 (2011), 18 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1752-0509-5-18'>10.1186/1752-0509-5-18</ext-link>

[18] Kotte O., Volkmer B., Radzikowski J. L., Heinemann M., “Phenotypic bistability in Escherichia coli's central carbon metabolism”, Mol. Syst. Biol., 10 (2014), 736 <ext-link ext-link-type='doi' href='https://doi.org/10.15252/msb.20135022'>10.15252/msb.20135022</ext-link>

[19] Klapper I., Gilbert P., Ayati B. P., Dockery J., Stewart P. S., “Senescence can explain microbial persistence”, Microbiology, 153 (2007), 3623–3630 <ext-link ext-link-type='doi' href='https://doi.org/10.1099/mic.0.2007/006734-0'>10.1099/mic.0.2007/006734-0</ext-link>

[20] Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S., “Bacterial persistence as a phenotypic switch”, Science, 305 (2004), 1622–1625 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1099390'>10.1126/science.1099390</ext-link>

[21] Verstraeten N., Knapen W., Fauvart M., Michiels J., “A Historical Perspective on Bacterial Persistence”, Methods Mol. Biol., 1333 (2016), 3–13 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-4939-2854-5_1'>10.1007/978-1-4939-2854-5_1</ext-link>

[22] Dörr T., Vulić M., Lewis K., “Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli”, PLoS Biol., 8:2 (2010), e1000317 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pbio.1000317'>10.1371/journal.pbio.1000317</ext-link>

[23] Fasani R. A., Savageau M. A., “Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype”, Proc. Natl. Acad. Sci. USA, 110 (2013), E2528–2537 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1301023110'>10.1073/pnas.1301023110</ext-link>

[24] Gelens L., Hill L., Vandervelde A., Danckaert J., Loris R., “A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli”, PLoS Comput. Biol., 9 (2013), e1003190 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1003190'>10.1371/journal.pcbi.1003190</ext-link>

[25] Likhoshvai V. A., Khlebodarova T. M., “Coordination of cell growth and DNA replication: a mathematical model”, Math. Biol. Bioinf., 8:1 (2013), 66–92 (in Russian) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2013.8.66'>10.17537/2013.8.66</ext-link>

[26] Likhoshvai V. A., Khlebodarova T. M., “Mathematical modeling of bacterial cell cycle: The problem of coordinating genome replication with cell growth”, J. Bioinform. Comput. Biol., 12:3 (2014), 1450009 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0219720014500097'>10.1142/S0219720014500097</ext-link>

[27] Donachie W. D., “Relationship between cell size and time of initiation of DNA replication”, Nature, 219 (1968), 1077–1079 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/2191077a0'>10.1038/2191077a0</ext-link>

[28] Cooper S., Helmstetter C. E., “Chromosome replication and the division cycle of Escherichia coli B/r”, J. Mol. Biol., 31 (1968), 619–644 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90425-7'>10.1016/0022-2836(68)90425-7</ext-link>

[29] Neidhardt F. C. (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington D. C., 1987, 1654 pp.

[30] Kennell D., Riezman H., “Transcription and translation initiation frequencies of the Escherichia coli lac operon”, J. Mol. Biol., 114 (1977), 1–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(77)90279-0'>10.1016/0022-2836(77)90279-0</ext-link>

[31] Zaritsky A., Woldringh C. L., “Chromosome replication rate and cell shape in Escherichia coli: lack of coupling”, J. Bacteriol., 135:2 (1978), 581–587

[32] Pedersen S., Reeh S., Friesen D. J., “Functional mRNA half-lives in E. coli”, Mol. Gen. Genet., 166 (1978), 329–336

[33] Mosteller R. D., Goldstein R. V., Nishimoto K. R., “Metabolism of individual proteins in exponentially growing Escherichia coli”, J. Biol. Chem., 255:6 (1980), 2524–2532

[34] Selinger D. W., Saxena R. M., Cheung K. J., Church G. M., Rosenow C., “Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation”, Genome Res., 13:2 (2003), 216–223 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/gr.912603'>10.1101/gr.912603</ext-link>

[35] Bernstein J. A., Lin P. H., Cohen S. N., Lin-Chao S., “Global analysis of Escherichia coli RNA degradosome function using DNA microarrays”, Proc. Natl. Acad. Sci. USA, 101:9 (2004), 2758–2763 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0308747101'>10.1073/pnas.0308747101</ext-link>

[36] Jayapal K. P., Sui S., Philp R. J., Kok Y. J., Yap M. G., Griffin T. J., Hu W. S., “Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems”, J. Proteome Res., 9:5 (2010), 2087–2097 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/pr9007738'>10.1021/pr9007738</ext-link>

[37] Taniguchi Y., Choi P. J., Li G. W., Chen H., Babu M., Hearn J., Emili A., Xie X. S., “Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells”, Science, 329:5991 (2010), 533–538 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1188308'>10.1126/science.1188308</ext-link>

[38] Inouye M., Shaw J., Shen C., “The assembly of a structural lipoprotein in the envelope of Escherichia coli”, J. Biol. Chem., 247:24 (1972), 8154–8159

[39] Schaechter M., Maaloe O., Kjeldgaard N. O., “Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium”, J. Gen. Microbiol., 19 (1958), 592–606 <ext-link ext-link-type='doi' href='https://doi.org/10.1099/00221287-19-3-592'>10.1099/00221287-19-3-592</ext-link>

[40] Schaechter M., Williamson J. P., Hood J. R. Jr., Koch A. L., “Growth, cell and nuclear divisions in some bacteria”, J. Gen. Microbiol., 29 (1962), 421–434 <ext-link ext-link-type='doi' href='https://doi.org/10.1099/00221287-29-3-421'>10.1099/00221287-29-3-421</ext-link>

[41] Yoshikawa H., O'Sullivan A., Sueoka N., “Sequential replication of the Bacillus subtilis chromosome. III. Regulation of initiation”, Proc. Natl. Acad. Sci. USA, 52 (1964), 973–980 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.52.4.973'>10.1073/pnas.52.4.973</ext-link>

[42] Zaritsky A., Vischer N., Rabinovitch A., “Changes of initiation mass and cell dimensions by the 'eclipse'”, Mol. Microbiol., 63 (2007), 15–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.2006.05501.x'>10.1111/j.1365-2958.2006.05501.x</ext-link>

[43] Zaritsky A., Wang P., Vischer N. O., “Instructive simulation of the bacterial cell division cycle”, Microbiology, 157 (2011), 1876–1885 <ext-link ext-link-type='doi' href='https://doi.org/10.1099/mic.0.049403-0'>10.1099/mic.0.049403-0</ext-link>

[44] Grant M. A., Saggioro C., Ferrari U., Bassetti B., Sclavi B., Cosentino Lagomarsino M., “DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate”, BMC Syst. Biol., 5 (2011), 201 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1752-0509-5-201'>10.1186/1752-0509-5-201</ext-link>

[45] Soo V. W., Cheng H. Y., Kwan B. W., Wood T. K., “De novo synthesis of a bacterial toxin/antitoxin system”, Sci. Rep., 4 (2014), 4807 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/srep04807'>10.1038/srep04807</ext-link>

[46] Keren I., Shah D., Spoering A., Kaldalu N., Lewis K., “Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli”, J. Bacteriol., 186 (2004), 8172–8180 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.186.24.8172-8180.2004'>10.1128/JB.186.24.8172-8180.2004</ext-link>

[47] Shah D., Zhang Z., Khodursky A., Kaldalu N., Kurg K., Lewis K., “Persisters: a distinct physiological state of E. coli”, BMC Microbiol., 6 (2006), 53 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2180-6-53'>10.1186/1471-2180-6-53</ext-link>