Integration of foreign genetic material provokes local mutagenesis in the recipient genome
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017), pp. t12-t22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exchange of genetic material is a key factor of evolution in bacteria, though the mechanisms of integration of horizontally acquired genes into the regulatory networks of the new host remain practically uninvestigated. The present study is devoted to analyzing this adaptation and, in particular, involvement of the bacterial transcription machinery in this process. Therefore, two foreign genes in the genome of Escherichia coli K12 MG1655 were substituted with their copies taken from the genomes of presumed donor bacterium, and long-term growth of mutant and control cultures was initiated. Following 2000 (for gene sfmA) and 4000 (for gene ydhZ) generations, the modified and native genomic regions were amplified and used for population sequencing. Spontaneous mutations were analyzed, and it was found that substitutions of G/C- to A/T-pairs occurred more frequently in the modified regions as compared to non-modified, whereas A/T $\to$ G/C substitutions were rarer. This implies that the host genome responds to integration of foreign genetic material with an adaptive reaction aimed to enrich the modified region with A/T-pairs. In the course of long-term evolution, it may result either in “silencing” of an adverse gene with the involvement of H-NS — a specific suppressor of foreign genes, or in the creation of a suitable promoter within a promoter island for adequate expression of useful gene.
@article{MBB_2017_12_a1,
     author = {O. A. Glazunova and K. S. Shavkunov and M. N. Tutukina and V. V. Panyukov and O. N. Ozoline},
     title = {Integration of foreign genetic material provokes local mutagenesis in the recipient genome},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t12--t22},
     publisher = {mathdoc},
     volume = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_a1/}
}
TY  - JOUR
AU  - O. A. Glazunova
AU  - K. S. Shavkunov
AU  - M. N. Tutukina
AU  - V. V. Panyukov
AU  - O. N. Ozoline
TI  - Integration of foreign genetic material provokes local mutagenesis in the recipient genome
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - t12
EP  - t22
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_a1/
LA  - en
ID  - MBB_2017_12_a1
ER  - 
%0 Journal Article
%A O. A. Glazunova
%A K. S. Shavkunov
%A M. N. Tutukina
%A V. V. Panyukov
%A O. N. Ozoline
%T Integration of foreign genetic material provokes local mutagenesis in the recipient genome
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P t12-t22
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_a1/
%G en
%F MBB_2017_12_a1
O. A. Glazunova; K. S. Shavkunov; M. N. Tutukina; V. V. Panyukov; O. N. Ozoline. Integration of foreign genetic material provokes local mutagenesis in the recipient genome. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017), pp. t12-t22. http://geodesic.mathdoc.fr/item/MBB_2017_12_a1/

[1] Ochman H., Davalos L. M., “The nature and dynamics of bacterial genomes”, Science, 311 (2006), 1730–1733 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1119966'>10.1126/science.1119966</ext-link>

[2] Cohan F. M., Koeppel A. F., “The origins of ecological diversity in prokaryotes”, Curr. Biol., 18 (2008), R1024–R1034 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cub.2008.09.014'>10.1016/j.cub.2008.09.014</ext-link>

[3] Wybouw N., Pauchet Y., Heckel D. G., Van Leeuwen T., “Horizontal gene transfer contributes to the evolution of Arthropod Herbivory”, Genome Biol. Evol., 8 (2016), 1785–1801 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/gbe/evw119'>10.1093/gbe/evw119</ext-link>

[4] Levin B. R., “Frequency-dependent selection in bacterial populations”, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 319 (1988), 459–472 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rstb.1988.0059'>10.1098/rstb.1988.0059</ext-link>

[5] Domingues S., Harms K., Fricke W. F., Johnsen P. J., da Silva G. J., Nielsen K. M., “Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species”, PLoS Pathog., 8 (2012), e1002837 <ext-link ext-link-type='doi' href='https://doi.org/org/10.1371/journal.ppat.1002837'>org/10.1371/journal.ppat.1002837</ext-link>

[6] Ochman H., Lawrence J. G., Groisman E. A., “Lateral gene transfer and the nature of bacterial innovation”, Nature, 405 (2000), 299–304 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35012500'>10.1038/35012500</ext-link>

[7] Studier F. W., Daegelen P., Lenski R. E., Maslov S., Kim J. F., “Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes”, J. Mol. Biol., 394 (2009), 653–680 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2009.09.021'>10.1016/j.jmb.2009.09.021</ext-link>

[8] Nakamura Y., Itoh T., Matsuda H., Gojobori T., “Biased biological functions of horizontally transferred genes in prokaryotic genomes”, Nat. Genet., 36 (2004), 760–766 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ng1381'>10.1038/ng1381</ext-link>

[9] McDaniel L. D., Young E., Delaney J., Ruhnau F., Ritchie K. B., Paul J. H., “High frequency of horizontal gene transfer in the oceans”, Science, 330 (2010), 50 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.1192243'>10.1126/science.1192243</ext-link>

[10] Gogarten J. P., Doolittle W. F., Lawrence J. G., “Prokaryotic evolution in light of gene transfer”, Mol. Biol. Evol., 19 (2002), 2226–2238 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/oxfordjournals.molbev.a004046'>10.1093/oxfordjournals.molbev.a004046</ext-link>

[11] Huang Q., Cheng X., Cheung M. K., Kiselev S. S., Ozoline O. N., Kwan H. S., “Highdensity transcriptional initiation signals underline genomic islands in bacteria”, PLoS ONE, 7 (2012), e33759 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0033759'>10.1371/journal.pone.0033759</ext-link>

[12] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons in genome-scale promoter mapping”, Nucl. Acids Res., 37 (2009), 4919–4931 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkp490'>10.1093/nar/gkp490</ext-link>

[13] Panyukov V. V., Ozoline O. N., “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS ONE, 8 (2013), e62601 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0062601'>10.1371/journal.pone.0062601</ext-link>

[14] Purtov Y. A., Glazunova O. A., Antipov S. S., Pokusaeva V. O., Fesenko E. E., Preobrazhenskaya E. V., Shavkunov K. S., Tutukina M. N., Lukyanov V. I., Ozoline O. N., “Promoter Islands as a platform for interaction with nucleoid proteins and transcription factors”, J. Bioinform. Comput. Biol., 12 (2014), 1441006 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0219720014410066'>10.1142/S0219720014410066</ext-link>

[15] Glazunova O. A., Kiselev S. S., Shavkunov K. S., Bykov A. A., Panyukov V. V., Ozoline O. N., “Promoter islands in the genome of E. coli: comparative analysis against AT-rich sequences”, Math. Biol. Bioinform., 10 (2015), t29–t38 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2015.10.t29'>10.17537/2015.10.t29</ext-link>

[16] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozoline O. N., “Mixed promoter islands as genomic regions with specific structural and functional properties”, Math. Biol. Bioinform., 8 (2013), t12–t26 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2013.8.t12'>10.17537/2013.8.t12</ext-link>

[17] Reppas N. B., Wade J. T., Church G. M., Struhl K., “The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting”, Mol. Cell., 24 (2006), 747–757 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2006.10.030'>10.1016/j.molcel.2006.10.030</ext-link>

[18] Herring C. D., Raffaelle M., Allen T. E., Kanin E. I., Landick R., Ansari A. Z., Palsson B. O., “Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays”, J. Bacteriol., 178 (2005), 6166–6174 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.187.17.6166-6174.2005'>10.1128/JB.187.17.6166-6174.2005</ext-link>

[19] Dornenburg J. E., DeVita A. M., Palumbo M. J., Wade J. T., “Widespread antisense transcription in Escherichia coli”, mBio, 1 (2010), e00024-10 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/JB.187.17.6166-6174.2005'>10.1128/JB.187.17.6166-6174.2005</ext-link>

[20] Kahramanoglou C., Seshasayee A. S., Prieto A. I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G. M., Luscombe N. M., “Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli”, Nucleic Acids Res., 39 (2011), 2073–2091 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkq934'>10.1093/nar/gkq934</ext-link>

[21] Lucchini S., Rowley G., Goldberg M. D., Hurd D., Harrison M., Hinton J. C., “H-NS mediates the silencing of laterally acquired genes in bacteria”, PLoS Pathog., 2 (2006), e81 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.ppat.0020081'>10.1371/journal.ppat.0020081</ext-link>

[22] Dorman C. J., “H-NS, the genome sentinel”, Nat. Rev. Microbiol., 5 (2007), 157–161 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nrmicro1598'>10.1038/nrmicro1598</ext-link>

[23] Langille M. G., Brinkman F. S., “IslandViewer: an integrated interface for computational identification and visualization of genomic islands”, Bioinformatics, 25 (2009), 664–665 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btp030'>10.1093/bioinformatics/btp030</ext-link>

[24] Lawrence J. G., Ochman H., “Molecular archaeology of the Escherichia coli genome”, Proc. Natl. Acad. Sci. USA, 95 (1998), 9413–9417 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.95.16.9413'>10.1073/pnas.95.16.9413</ext-link>

[25] Price M. N., Dehal P. S., Arkin A. P., “Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli”, Genome Biol., 9 (2008), R4 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/gb-2008-9-1-r4'>10.1186/gb-2008-9-1-r4</ext-link>

[26] Lee D. J., Bingle L. E., Heurlier K., Pallen M. J., Penn C. W., Busby S. J., Hobman J. L., “Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains”, BMC Microbiol., 9 (2009), 252 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2180-9-252'>10.1186/1471-2180-9-252</ext-link>

[27] E. coli Gene Expression Database (GenExpDB), (accessed November 26, 2016) <ext-link ext-link-type='uri' href='http://genexpdb.ou.edu/main/'>http://genexpdb.ou.edu/main/</ext-link>

[28] Sangurdekar D. P., Srienc F., Khodursky A. B., “A classification based framework for quantitative description of large-scale microarray data”, Genome Biol., 7 (2006), R32 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/gb-2006-7-4-r32'>10.1186/gb-2006-7-4-r32</ext-link>

[29] Afgan E., Baker D., van den Beek M., Blankenberg D., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Eberhard C., Gruning B., Guerler A., Hillman-Jackson J., Von Kuster G., Rasche E., Soranzo N., Turaga N., Taylor J., Nekrutenko A., Goecks J., “The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update”, Nucl. Acids Research, 44 (2016), W3–W10 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkw343'>10.1093/nar/gkw343</ext-link>

[30] Matcher, (accessed November 2016) <ext-link ext-link-type='uri' href='http://www.mathcell.ru/DnaRnaTools/Matcher.zip'>http://www.mathcell.ru/DnaRnaTools/Matcher.zip</ext-link>

[31] Ozoline O. N., Deev A. A., “Predicting antisense RNAs in the genomes of Escherichia coli and Salmonella typhimurium using promoter-search algorithm PlatProm”, J. Bioinform. Comput. Biol., 4 (2006), 443–454 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0219720006001916'>10.1142/S0219720006001916</ext-link>

[32] Kiselev S. S., Ozoline O. N., “Structure-specific modules as indicators of promoter DNA in bacterial genomes”, Math. Biol. Bioinform., 6 (2011), t1–t13 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2011.6.t1'>10.17537/2011.6.t1</ext-link>

[33] Barrick J. E., Yu D. S., Yoon S. H., Jeong H., Oh T. K., Schneider D., Lenski R. E., Kim J. F., “Genome evolution and adaptation in a long-term experiment with Escherichia coli”, Nature, 461 (2009), 1243–1247 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature08480'>10.1038/nature08480</ext-link>

[34] Barrick J. E., Lenski R. E., “Genome-wide mutational diversity in an evolving population of Escherichia coli”, Cold Spring Harb. Symp. Quant. Biol., 74 (2009), 119–129 <ext-link ext-link-type='doi' href='https://doi.org/10.1101/sqb.2009.74.018'>10.1101/sqb.2009.74.018</ext-link>