Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_2_a7, author = {A. V. Danilkovich and D. A. Tikhonov and V. I. Turobov and I. P. Udovichenko}, title = {Time saving approach to design altered ligand structure}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {446--456}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/} }
TY - JOUR AU - A. V. Danilkovich AU - D. A. Tikhonov AU - V. I. Turobov AU - I. P. Udovichenko TI - Time saving approach to design altered ligand structure JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 446 EP - 456 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/ LA - ru ID - MBB_2017_12_2_a7 ER -
%0 Journal Article %A A. V. Danilkovich %A D. A. Tikhonov %A V. I. Turobov %A I. P. Udovichenko %T Time saving approach to design altered ligand structure %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 446-456 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/ %G ru %F MBB_2017_12_2_a7
A. V. Danilkovich; D. A. Tikhonov; V. I. Turobov; I. P. Udovichenko. Time saving approach to design altered ligand structure. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 446-456. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/
[1] Taguchi G., System of experimental design: engineering methods to optimize quality and minimize costs, v. 1, Kraus International Publications, 1987
[2] Danilkovich A. V., Turobov V. I., Sobolev E. V., Udovichenko I. P., Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 385–393 | DOI
[3] Abbasian M. A., Moallem M., Fahimi B., “Double stator switched reluctance machines (DSSRM): fundamentals and magnetic force analysis”, IEEE Trans. on Energy Con., 25 (2010), 589–597 | DOI
[4] Cobb B. D., Clarkson J. M., “A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods”, Nucleic Acids Res., 22 (1994), 3801–3805 | DOI
[5] Burch G. J., Ferguson C. H., Cartwright G., Kwong F. Y., “Application of Taguchi experimental design to the optimisation of a baculovirus expression system”, Biochem. Soc. Trans., 23 (1995), 107S | DOI
[6] Jeney C., Dobay O., Lengyel A., Adam E., Nasz I., “Taguchi optimisation of ELISA procedures”, J. Immunol. Methods, 223 (1999), 137–146 | DOI
[7] Martenson R. E., “Myelin basic protein speciation”, Experimental Allergic Encephalomyelitis. A Useful Model for Multiple Sclerosis, Progress in Clinical and Biological Research, 146, eds. E.C. Alvord Jr., M.W. Kies, A.J. Suckling, Alan R. Liss, Inc., New York, 1983
[8] Case D. A., Cheatham T. E. III., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI
[9] Guex N., Peitsch M. C., “SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling”, Electrophoresis, 18 (1997), 2714–2723 | DOI
[10] Tsui V., Case D. A., “Theory and applications of the generalized Born solvation model in macromolecular simulations”, Biopolymers (Nucl. Acid. Sci.), 56 (2001), 275–291 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[11] Onufriev A., Bashford D., Case D. A., “Exploring protein native states and large-scale conformational changes with a modified generalized Born model”, Proteins, 55 (2004), 383–394 | DOI
[12] Van Gunsteren W. F., Billeter S. R., Eising A. A., Hunenberger P. H., Krüger P., Mark A. E., Scott W. R.P., Tironi I. G., Biomolecular Simulation: The GROMOS96 Manual and User Guide, Vdf Hochschulverlag AG and der ETH Zürich, Switzerland, Zürich, 1996, 1042 pp.
[13] Case D. A., Betz R. M., Cerutti D. S., Cheatham III T. E., Darden T. A., Duke R. E., Giese T. J., Gohlke H., Goetz A. W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T. S., LeGrand S., Li P., Lin C., Luchko T., Luo R., Madej B., Mermelstein D., Merz K. M., Monard G., Nguyen H., Nguyen H. T., Omelyan I., Onufriev A., Roe D. R., Roitberg A., Sagui C., Simmerling C. L., Botello-Smith W. M., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X., Xiao L., Kollman P. A., AMBER 2016, University of California, San Francisco, 2016
[14] Case D. A., Cheatham T. E. III., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI
[15] Duan Y., Wu C., Chowdhury S., Lee M.., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 | DOI | MR
[16] Danilkovich A. V., Sobolev E. V., Tikhonov D. A., Udovichenko I. P., Lipkin V. M., “Distinctive H-(RLDL)$_4$-OH Peptide Complexes Potentiate Nanostructure Self-Assembling in Water”, Doklady Biochemistry and Biophysics, 443 (2012), 96–99 | DOI
[17] Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., “Semianalytical treatment of solvation for molecular mechanics and dynamics”, Journal of the American Chemical Society, 112 (1990), 6127–6129 | DOI