Time saving approach to design altered ligand structure
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 446-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

To find energetically advantageous variants of the structure of the peptide ligand complexing with the proteins of the major histocompatibility complex and the T-cell receptor (SwissProt ID: 2Z31), the binding energy of hexamers, which are fragments of the native ligand structure, was compared. To form a set of investigated hexamers, the Taguchi method was used. In total, 53 variants of the structure of the complex were constructed and investigated using molecular dynamics. Calculations were carried out both for complete complexes and for free structures - receptors and ligands. On the basis of the obtained molecular trajectories, using the generalized Born method, the free energy of the structures was calculated and averaged for each trajectory. Using the Taguchi method to analyze the peptide hexamer sequence, it was possible to determine prototypes of the ligand whose structures have a higher binding energy to the receptor than the fragment of the original SQYRPS ligand. The applied approach significantly reduces the time required for optimization of the peptide ligand structure.
@article{MBB_2017_12_2_a7,
     author = {A. V. Danilkovich and D. A. Tikhonov and V. I. Turobov and I. P. Udovichenko},
     title = {Time saving approach to design altered ligand structure},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {446--456},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/}
}
TY  - JOUR
AU  - A. V. Danilkovich
AU  - D. A. Tikhonov
AU  - V. I. Turobov
AU  - I. P. Udovichenko
TI  - Time saving approach to design altered ligand structure
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 446
EP  - 456
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/
LA  - ru
ID  - MBB_2017_12_2_a7
ER  - 
%0 Journal Article
%A A. V. Danilkovich
%A D. A. Tikhonov
%A V. I. Turobov
%A I. P. Udovichenko
%T Time saving approach to design altered ligand structure
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 446-456
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/
%G ru
%F MBB_2017_12_2_a7
A. V. Danilkovich; D. A. Tikhonov; V. I. Turobov; I. P. Udovichenko. Time saving approach to design altered ligand structure. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 446-456. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a7/

[1] Taguchi G., System of experimental design: engineering methods to optimize quality and minimize costs, v. 1, Kraus International Publications, 1987

[2] Danilkovich A. V., Turobov V. I., Sobolev E. V., Udovichenko I. P., Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 385–393 | DOI

[3] Abbasian M. A., Moallem M., Fahimi B., “Double stator switched reluctance machines (DSSRM): fundamentals and magnetic force analysis”, IEEE Trans. on Energy Con., 25 (2010), 589–597 | DOI

[4] Cobb B. D., Clarkson J. M., “A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods”, Nucleic Acids Res., 22 (1994), 3801–3805 | DOI

[5] Burch G. J., Ferguson C. H., Cartwright G., Kwong F. Y., “Application of Taguchi experimental design to the optimisation of a baculovirus expression system”, Biochem. Soc. Trans., 23 (1995), 107S | DOI

[6] Jeney C., Dobay O., Lengyel A., Adam E., Nasz I., “Taguchi optimisation of ELISA procedures”, J. Immunol. Methods, 223 (1999), 137–146 | DOI

[7] Martenson R. E., “Myelin basic protein speciation”, Experimental Allergic Encephalomyelitis. A Useful Model for Multiple Sclerosis, Progress in Clinical and Biological Research, 146, eds. E.C. Alvord Jr., M.W. Kies, A.J. Suckling, Alan R. Liss, Inc., New York, 1983

[8] Case D. A., Cheatham T. E. III., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI

[9] Guex N., Peitsch M. C., “SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling”, Electrophoresis, 18 (1997), 2714–2723 | DOI

[10] Tsui V., Case D. A., “Theory and applications of the generalized Born solvation model in macromolecular simulations”, Biopolymers (Nucl. Acid. Sci.), 56 (2001), 275–291 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Onufriev A., Bashford D., Case D. A., “Exploring protein native states and large-scale conformational changes with a modified generalized Born model”, Proteins, 55 (2004), 383–394 | DOI

[12] Van Gunsteren W. F., Billeter S. R., Eising A. A., Hunenberger P. H., Krüger P., Mark A. E., Scott W. R.P., Tironi I. G., Biomolecular Simulation: The GROMOS96 Manual and User Guide, Vdf Hochschulverlag AG and der ETH Zürich, Switzerland, Zürich, 1996, 1042 pp.

[13] Case D. A., Betz R. M., Cerutti D. S., Cheatham III T. E., Darden T. A., Duke R. E., Giese T. J., Gohlke H., Goetz A. W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T. S., LeGrand S., Li P., Lin C., Luchko T., Luo R., Madej B., Mermelstein D., Merz K. M., Monard G., Nguyen H., Nguyen H. T., Omelyan I., Onufriev A., Roe D. R., Roitberg A., Sagui C., Simmerling C. L., Botello-Smith W. M., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X., Xiao L., Kollman P. A., AMBER 2016, University of California, San Francisco, 2016

[14] Case D. A., Cheatham T. E. III., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI

[15] Duan Y., Wu C., Chowdhury S., Lee M.., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 | DOI | MR

[16] Danilkovich A. V., Sobolev E. V., Tikhonov D. A., Udovichenko I. P., Lipkin V. M., “Distinctive H-(RLDL)$_4$-OH Peptide Complexes Potentiate Nanostructure Self-Assembling in Water”, Doklady Biochemistry and Biophysics, 443 (2012), 96–99 | DOI

[17] Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., “Semianalytical treatment of solvation for molecular mechanics and dynamics”, Journal of the American Chemical Society, 112 (1990), 6127–6129 | DOI