Projection to latent structures as a strategy for peptides microarray data analysis
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 435-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently various microarrays platforms containing nucleotides, proteins, peptides, glycans and other molecules are used in biomedical research. Number and density of immobilized molecules on microarrays are constantly increasing. Microarray data handling requires optimization of methods for their analysis. Peptide microarrays data analysis has certain characteristics that require non-conventional statistical methods. In this paper we present the results of antibody repertoire analysis in breast cancer patients sera utilizing microchips containing 330,000 peptides. We investigated methods for space dimension reduction such as projective methods and methods for selection of informative features. We have shown that method of projection to latent structures can detect an effective data dimension, reduce overfitting of the model and increase the quality of object recognition. Accuracy of the experimental results was assessed with the ROC-curve; the best quality was achieved with three latent structures without normalization and reduction of total numbers of peptides.
@article{MBB_2017_12_2_a6,
     author = {D. S. Anisimov and S. V. Podlesnykh and E. A. Kolosova and D. N. Shcherbakov and V. D. Petrova and S. S. Johnston and A. F. Lazarev and N. M. Oskorbin and A. I. Shapoval and M. A. Ryazanov},
     title = {Projection to latent structures as a strategy for peptides microarray data analysis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {435--445},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a6/}
}
TY  - JOUR
AU  - D. S. Anisimov
AU  - S. V. Podlesnykh
AU  - E. A. Kolosova
AU  - D. N. Shcherbakov
AU  - V. D. Petrova
AU  - S. S. Johnston
AU  - A. F. Lazarev
AU  - N. M. Oskorbin
AU  - A. I. Shapoval
AU  - M. A. Ryazanov
TI  - Projection to latent structures as a strategy for peptides microarray data analysis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 435
EP  - 445
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a6/
LA  - ru
ID  - MBB_2017_12_2_a6
ER  - 
%0 Journal Article
%A D. S. Anisimov
%A S. V. Podlesnykh
%A E. A. Kolosova
%A D. N. Shcherbakov
%A V. D. Petrova
%A S. S. Johnston
%A A. F. Lazarev
%A N. M. Oskorbin
%A A. I. Shapoval
%A M. A. Ryazanov
%T Projection to latent structures as a strategy for peptides microarray data analysis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 435-445
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a6/
%G ru
%F MBB_2017_12_2_a6
D. S. Anisimov; S. V. Podlesnykh; E. A. Kolosova; D. N. Shcherbakov; V. D. Petrova; S. S. Johnston; A. F. Lazarev; N. M. Oskorbin; A. I. Shapoval; M. A. Ryazanov. Projection to latent structures as a strategy for peptides microarray data analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 435-445. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a6/

[1] Osipova T. V., Ryabykh T. P., Baryshnikov A. Yu., “Diagnosticheskie mikrochipy: primenenie v onkologii”, Rossiiskii bioterapevticheskii zhurnal, 5:3 (2006), 72–81

[2] Nikitin E. A., Sudarikov A. B., Baranova A. V., “Mikrochipy: novyi etap v onkogematologii”, Onkogematologiya, 2008, no. 1–2, 6–12

[3] Kozhevnikova O. S., Martyschenko M. K., Genaev M. K., Korbolina E. E., Muraleva N. A., Kolosova N. G., Orlov Yu. L., “RatDNA: baza dannykh mikrochipovykh issledovanii na krysakh dlya genov, assotsiirovannykh s zabolevaniyami stareniya”, Vavilov. zhurn. genet. i selektsii, 16:4/1 (2012), 756–765

[4] Osipova T. V., Ryabykh T. P., Dementeva E. I., Darii E. L., Rubina A. Yu., Zasedatelev A. S., “Belkovye mikrochipy dlya diagnostiki zlokachestvennykh novoobrazovanii. Razrabotka biochipa na prostata-spetsificheskii antigen”, Rossiiskii bioterapevticheskii zhurnal, 2:3 (2003), 24–30

[5] Nasedkina T. V., “Ispolzovanie biologicheskikh mikrochipov v onkogematologii”, Onkogematologiya, 2006, no. 1–2, 25–37

[6] Kitaeva N. V., Frigo N. V., Volkov I. A., Likhareva V. V., “Biomikrochipy i vozmozhnost ikh primeneniya v dermatovenerologii”, Vestnik dermatologii i venerologii, 2009, no. 6, 33–45

[7] Hall J., “The microarray revolution: how one chip is changing the face of science”, Harvard Science Rev., 2002, 82–85

[8] Jain K. K., “The role of protein chip technology in molecular diagnostics”, IVD Technology, 8 (2002), 49–56

[9] Kijanka G., Murphy D., “Protein arrays as tools for serum autoantibody marker discovery in cancer”, J. Proteomics, 72:6, 936–944 | DOI

[10] Podlesnykh S. V., Kolosova E. A., Shcherbakov D. N., Shaidurov A. A., Anisimov D. S., Ryazanov M. A., Johnston S. A., Shoikhet Ya. N., Petrova V. D., Lazarev A. F., Chapoval A. I., “Interaction of serum antibodies from breast cancer patients with synthetic peptides”, Bulletin of Experimental Biology and Medicine, 161:6 (2016), 816–820 | DOI

[11] Stafford P., Brun M., “Three methods for optimization of cross-laboratory and cross-platform microarray expression data”, Nucleic Acids Res., 35:10 (2007), 1–16 | DOI

[12] Rubina A. Y., Dementieva E. I., Stomakhin A. A., Darii E. L., Pankov S. V., Barsky V. E., Ivanov S. M., Konovalova E. V., Mirzabekov A. D., “Hydrogel - based protein microchips: manufacturing, properties, and applications”, BioTechniques, 34 (2003), 1008–1022

[13] Hardiman G., “Microarray platforms – comparisons and contrasts”, Pharmacogenomics, 5:5 (2004), 487–502 | DOI

[14] Lacombe J., Mange A., Solassol J., “Use of autoantibodies to detect the onset of breast cancer”, Journal of Immunology Research, 2014, 8

[15] Blohm D. H., Guiseppi-Elie A., “New developments in microarray technology”, Curr. Opin. Biotechnol., 12 (2001), 41–47 | DOI

[16] Shapoval A. I., Legutki D. B., Stafford F., Trebukhov A. V., Dzhonston S., Shoikhet Ya. N., Lazarev A. F., “Immunosignatura (immunosignature) — peptidnye mikroerrei dlya diagnostiki raka i drugikh zabolevanii”, Rossiiskii onkologicheskii zhurnal, 2014, no. 4, 6–11

[17] Legutki J. B., Zhao Z. G., Greving M., Woodbury N., Johnston S. A., Stafford P., “Scalable high-density peptide arrays for comprehensive health monitoring”, Nature Communications, 5 (2014), 4785 | DOI

[18] Anisimov D. S., Ryazanov M. A., Shapoval A. I., “Podkhod k obrabotke mnogomernykh dannykh peptidnykh mikrochipov”, Izvestiya AltGU, 1-2(85) (2015), 77–80 | DOI

[19] Cretich M., Chiari M., Peptide Microarrays: Methods and Protocols, Humana Press, 2009 | DOI

[20] Esbensen K., Analiz mnogomernykh dannykh. Izbrannye glavy, Izd-vo Alt. un-ta, Barnaul, 2003, 157 pp.

[21] Student, “The probable error of a mean”, Biometrika, 6:1 (1908), 1–25 | DOI

[22] Mann H. B., Whitney D. R., “On a test of whether one of two random variables is stochastically larger than the other”, Annals of Mathematical Statistics, 18 (1947), 50–60 | DOI | MR

[23] Lilliefors H., “On the Kolmogorov–Smirnov test for normality with mean and variance unknown”, Journal of the American Statistical Association, 62:318 (1967), 399–402 | DOI

[24] Maksimov A. V., Oskorbin N. M., Mnogopolzovatelskie informatsionnye sistemy: osnovy teorii i metody issledovaniya, Izd-vo Alt. un-ta, Barnaul, 2013, 264 pp.