Analysis of the torsion angles between helical axes in pairs of helices in protein molecules
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 398-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, an analysis of distribution of the torsion angles $\Omega$ between helical axes in pairs of connected helices found in known proteins has been performed. The database for helical pairs was compiled using the Protein Data Bank taking into account the definite rules suggested earlier. The database was analyzed in order to elaborate its classification and find out novel structural features in helix packing. The database was subdivided into three subsets according to criterion of crossing helix projections on the parallel planes passing through the axes of the helices. It was shown that helical pairs not having crossing projections are distributed along whole range of angles $\Omega$, although there are two maxima at $\Omega=0^\circ$ and $\Omega=180^\circ$. Most of helical pairs of this subset are pairs formed by $\alpha$-helices and $3_{10}$- helices. It is shown that the distribution of all the helical pairs having the crossing helix projections has a maximum at $20^\circ \Omega 25^\circ$. In this subset, most helical pairs are formed by $\alpha$-helices. The distribution of only $\alpha$-helical pairs having crossing axes projections has three maxima, at $-50^\circ \Omega -25^\circ$, $20^\circ \Omega 25^\circ$, and $70^\circ \Omega 110^\circ$.
@article{MBB_2017_12_2_a5,
     author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov},
     title = {Analysis of the torsion angles between helical axes in pairs of helices in protein molecules},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {398--410},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a5/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - L. I. Kulikova
AU  - A. V. Efimov
TI  - Analysis of the torsion angles between helical axes in pairs of helices in protein molecules
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 398
EP  - 410
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a5/
LA  - ru
ID  - MBB_2017_12_2_a5
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A L. I. Kulikova
%A A. V. Efimov
%T Analysis of the torsion angles between helical axes in pairs of helices in protein molecules
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 398-410
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a5/
%G ru
%F MBB_2017_12_2_a5
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. Analysis of the torsion angles between helical axes in pairs of helices in protein molecules. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 398-410. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a5/

[1] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 | DOI

[2] Tikhonov D. A., Kulikova L. I., Efimov A. V., “Statisticheskii analiz vnutrennikh rasstoyanii spiralnykh par v belkovykh molekulakh”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 170–190 | DOI

[3] Tikhonov D. A., Kulikova L. I., Efimov A. V., “Issledovanie mezhspiralnykh uglov v strukturnykh motivakh, obrazovannykh dvumya spiralyami”, Matematicheskaya biologiya i bioinformatika, 12:1 (2017), 83–101 | DOI

[4] Crick F. H. C., “The Packing of a-helices: simple coiled-coils”, Acta Crystallographica, 6 (1953), 689–697 | DOI

[5] Lee H. S., Choi J., Yoon S., “QHELIX: A Computational tool for the improved measurement of inter-helical angles in proteins”, Protein, 26 (2007), 556–561 | DOI

[6] Walther D., Eisenhaber F., Argos P., “Principles of helix-helix packing in proteins: the helical lattice superposition model”, Molecular Biology, 255 (1996), 536–553 | DOI

[7] Chothia C., Levitt M., Richardson D., “Structure of proteins: packing of $\alpha$-helices and pleated sheets”, Proc. Natl. Acad. Sci., 74 (1977), 4130–4134 | DOI

[8] Chothia C., Levitt M., Richardson D., “Helix to helix packing in proteins”, Molecular Biology, 145 (1981), 215–250 | DOI

[9] Levitt M., Chothia C., “Structural patterns in globular proteins”, Nature, 261 (1976), 552–558 | DOI

[10] Efimov A. V., “Standard structures in proteins”, Prog. Biophys. Molec. Biol., 60 (1993), 201–239 | DOI

[11] Gordeev A. B., Kargatov A. M., Efimov A. V., “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 | DOI

[12] Efimov A. V., “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. Kister A. E., Humana Press, Clifton, 2013, 177–189 | DOI

[13] Brazhnikov E. V., Efimov A. V., “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 | DOI

[14] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 | DOI

[15] Kabsch W., “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 | DOI

[16] Kabsch W., “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 | DOI

[17] Legland D., MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (data obrascheniya: 11.05.2017) http://github.com/dlegland/matGeom

[18] Calhoun J. R., Kono H., Lahr S., Wang W., DeGrado W. F., Saven J. G., “Computational design and characterization of a monomeric helical dinuclear metalloprotein”, Journal of Molecular Biology, 334:5 (2003), 1101–1115 | DOI

[19] Calhoun J. R., Nastri F., Maglio O., Pavone V., Lombardi A., DeGrado W. F., “Artificial diiron proteins: From structure to function”, Peptide Science, 80:2–3 (2005), 264–278 | DOI

[20] Chino M., Maglio O., Nastri F., Pavone V., DeGrado W. F., Lombardi A., “Artificial diiron enzymes with a de novo designed four-helix bundle structure”, European Journal of Inorganic Chemistry, 2015, 3371–3390 | DOI

[21] Chino M., Leone L., Maglio O., Lombardi A., “Designing Covalently Linked Heterodimeric Four-Helix Bundles”, Methods in Enzymology, 580, 2016, 471–499 | DOI

[22] Trovato A., Seno F., “A new perspective on analysis of helix-helix packing preferences in globular proteins”, Proteins: Structure, Function, Bioinformatics, 55 (2004), 1014–1022 | DOI