Intron sliding and length variability of genes enriched of phase 1 long introns
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 302-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

Due to high mutagenesis of intron sequences, intron evolution is usually considered in terms of evolution of exon-intron structures (EIS). The shifting of intron over short distances (rare evolutionary event called intron sliding) could lead to the change of intron phase, i.e. the intron position relative to the open reading frame. Here we analyze the EIS from four datasets of eukaryotic orthologues in order to find out the preferable choice of intron phase during sliding and to study the correlation between orthologous intron lengths. To identify the orthologous introns we have constructed the alignments of EIS of orthologous genes. Several sliding events with intron phase change were revealed from the analysis; however, our initial hypothesis that in the process of sliding introns prefer to change its phase to $0$ more frequently, was not been confirmed. Nevertheless, it is necessary to expand the analysis on a larger dataset for making a proper conclusions. Despite high variability of intron length, some taxonomic groups share the similar length values. Moreover, some length conservation could be observed if instead of intron length L we consider a normalized length $N = (L-A)/A$, where $A$ is an average length within an orthologous intron group. E.g. for ptprd genes of birds ($28$ species) the normalized value is in the interval $(-0.15, 0.15)$ for $85.2 \%$ of introns what is significantly higher than the values for random lengths set in accordance with the intron lengths distribution. That length “conservation” leads us to the question what intron length was in the ancient introns.
@article{MBB_2017_12_2_a3,
     author = {I. V. Poverennaya and D. D. Gorev and T. V. Astakhova and I. I. Tsitovich and V. V. Yakovlev and M. A. Roytberg},
     title = {Intron sliding and length variability of genes enriched of phase 1 long introns},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {302--316},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a3/}
}
TY  - JOUR
AU  - I. V. Poverennaya
AU  - D. D. Gorev
AU  - T. V. Astakhova
AU  - I. I. Tsitovich
AU  - V. V. Yakovlev
AU  - M. A. Roytberg
TI  - Intron sliding and length variability of genes enriched of phase 1 long introns
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 302
EP  - 316
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a3/
LA  - ru
ID  - MBB_2017_12_2_a3
ER  - 
%0 Journal Article
%A I. V. Poverennaya
%A D. D. Gorev
%A T. V. Astakhova
%A I. I. Tsitovich
%A V. V. Yakovlev
%A M. A. Roytberg
%T Intron sliding and length variability of genes enriched of phase 1 long introns
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 302-316
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a3/
%G ru
%F MBB_2017_12_2_a3
I. V. Poverennaya; D. D. Gorev; T. V. Astakhova; I. I. Tsitovich; V. V. Yakovlev; M. A. Roytberg. Intron sliding and length variability of genes enriched of phase 1 long introns. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 302-316. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a3/

[1] Patel A. A., McCarthy M., Steitz J. A., “The splicing of U12-type introns can be a rate-limiting step in gene expression”, EMBO J., 21:14 (2002), 3804–3815 | DOI

[2] de Souza S. J., Long M., Klein R. J., Roy S., Lin S., Gilbert W., “Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins”, Proc. Natl. Acad. Sci. U.S.A., 95:9 (1998), 5094–5099 | DOI

[3] Long M., de Souza S. J., Rosenberg C., Gilbert W., “Relationship between 'proto-splice sites' and intron phases: evidence from dicodon analysis”, Proc. Natl. Acad. Sci. U.S.A., 95:1 (1998), 219–223 | DOI

[4] Fedorov A., Suboch G., Bujakov M., Fedorova L., “Analysis of nonuniformity in intron phase distribution”, Nucleic Acids Res., 20:10 (1992), 2553–2557 | DOI

[5] Endo T., Fedorov A., de Souza S. J., Gilbert W., Do introns favor or avoid regions of amino acid conservation?, Mol. Biol. Evol., 19:4 (2002), 521–525 | DOI

[6] Gilbert W., de Souza W., Long M., “Origin of genes”, Proc. Natl. Acad. Sci. U.S.A., 94:15 (1997), 7698–7703 | DOI

[7] Rogozin I. B., Carmel L., Csuros M., Koonin E. V., “Origin and evolution of spliceosomal introns”, Biol. Direct., 7:1 (2012), 11 | DOI

[8] Sakurai A., Fujimori S., Kochiwa H., Kitamura-Abe S., Washio T., Saito R., Carninci P., Hayashizaki Y., Tomita M., “On biased distribution of introns in various eukaryotes”, Gene, 300:1–2 (2002), 89–95 | DOI

[9] Fedorova L., Fedorov A., “Introns in gene evolution”, Genetica, 118:2–3 (2003), 123–131 | DOI

[10] Gorlova O., Fedorov A., Logothetis Ch., Amos Ch., Gorlov I., “Genes with a large intronic burden show greaterevolutionary conservation on the protein level”, BMC Evolutionary Biology, 14:1 (2014), 50 | DOI

[11] Astakhova T. V., Roitberg M. A., Tsitovich I. I., Yakovlev V. V., “Zakonomernosti, svyazannye s raspredeleniem dlin intronov”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 482–490 | DOI

[12] Ruvinsky A., Ward W., “Intron Framing Exonic Nucleotides: A Compromise Between Protein Coding and Splicing Constraints”, Open EV. J., 2 (2008), 7–12 | DOI

[13] Uetani N., Kato K., Ogura H., Mizuno K., Kawano K., Mikoshiba K., Yakura H., Asano M., Iwakura Y., “Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice”, EMBO J., 19:12 (2000), 2775–2785 | DOI

[14] Koboldt D. C., Fulton R. S., McLellan M. D., Schmidt H., Kalicki-Veizer J., McMichael J. F., Fulton L. L., Dooling D. J., Ding L., Mardis E. R. at al., “Comprehensive molecular portraits of human breast tumours”, Nature, 490:7418 (2012), 61–70 | DOI

[15] Ding L., Getz G., Wheeler D. A., Mardis E. R., McLellan M. D., Cibulskis K., Sougnez C., Greulich H., Muzny D. M., Morgan M. B. at al., “Somatic mutations affect key pathways in lung adenocarcinoma”, Nature, 455:7216 (2008), 1069–1075 | DOI

[16] Clark O., Schmidt F., Coles C. H., Tchetchelnitski V., Stoker A. W., “Functional analysis of the putative tumor suppressor PTPRD in neuroblastoma cells”, Cancer Invest., 30:5 (2012), 422–432 | DOI

[17] Litwack E. D., Babey R., Buser R., Gesemann M., O'Leary D. D. M., “Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization”, Mol. Cell. Neurosci., 25:2 (2004), 263–274 | DOI

[18] Van den Oord E. J. C. G., Kuo P.-H., Hartmann A. M., Webb B. T., Moller H.-J., Hettema J. M., Giegling I., Bukszar J., Rujescu D., “Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism”, Arch. Gen. Psychiatry, 65:9 (2008), 1062–1071 | DOI

[19] Wu Q., Yu B., Chen Y., Shao Y., Zhang J., Zhong Q., Peng X., Yang H., Hu X., Chen B., Guan M., Wan J., Zhang W., “Single-nucleotide polymorphisms of MAMDC1 are associated with rash and photosensitivity, but not disease risk, of systemic lupus erythematosus in Chinese mainland population”, Clin. Rheumatol., 30:10 (2011), 1373–1378 | DOI

[20] Minet A. D., Rubin B. P., Tucker R. P., Baumgartner S., Chiquet-Ehrismann R., “Teneurin-1, a vertebrate homologue of the Drosophila pair-rule gene ten-m, is a neuronal protein with a novel type of heparin-binding domain”, J. Cell Sci., 112 (1999), 2019–2032

[21] Nunes S. M., Ferralli J., Choi K., Brown-Luedi M., Minet A. D., Chiquet-Ehrismann R., “The intracellular domain of teneurin-1 interacts with MBD1 and CAP/ponsin resulting in subcellular codistribution and translocation to the nuclear matrix”, Exp. Cell Res., 305:1 (2005), 122–132 | DOI

[22] Mosca T. J., Hong W., Dani V. S., Favaloro V., Luo L., “Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice”, Nature, 484:7393 (2012), 237–241 | DOI

[23] NCBI Gene Database, (data obrascheniya: 10.09.2017) http://www.ncbi.nlm.nih.gov/gene/

[24] NCBI GenBank Database, (data obrascheniya: 10.09.2017) http://www.ncbi.nlm.nih.gov/genbank/

[25] NCBI RefSeq Database, (data obrascheniya: 10.09.2017) http://www.ncbi.nlm.nih.gov/refseq/

[26] Rogozin I. B., Wolf Y. I., Sorokin A. V., Mirkin B. G., Koonin E. V., “Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution”, Curr. Biol., 13:17 (2003), 1512–1517 | DOI

[27] Burset M., Seledtsov I. A., Solovyev V. V., “Analysis of canonical and non-canonical splice sites in mammalian genomes”, Nucleic Acids Res., 28:21 (2000), 4364–4375 | DOI

[28] Marais G., Nouvellet P., Keightley P. D., Charlesworth B., “Intron size and exon evolution in Drosophila”, Genetics, 170:1 (2005), 481–485 | DOI

[29] RepeatMasker Home page, (data obrascheniya: 10.09.2017) http://repeatmasker.org