Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent X-ray diffractive imaging experiments
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 411-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invention of Coherent X-ray Diffractive Imaging (CXDI) technique allows to reconstruct inner structure of nanoparticles, such as proteins and viruses, with 1 Åresolution. In CXDI experiments, free electron laser radiation scatters at sample of object under study and a diffraction image is recorded. On a basis of many recorded diffraction images, original 3D structure is reconstructed. However, not all diffraction images can be used for reconstruction, many images are empty, others contain diffraction pattern of some contaminant or include contributions of several particles. Therefore, classification of recorded images by structure type becomes an important step of data analysis. This paper presents a comparison of several approaches for images classification by the structure type. The comparison was performed on different experimental datasets. New European X-ray Free-Electron Laser (XFEL) will start operating in 2017; it will allow collecting up to 27,000 diffraction images per second. The possibility of image classification in European XFEL experiments at the rate of data collection was also investigated with considered approaches.
@article{MBB_2017_12_2_a21,
     author = {S. A. Bobkov},
     title = {Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent {X-ray} diffractive imaging experiments},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {411--434},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a21/}
}
TY  - JOUR
AU  - S. A. Bobkov
TI  - Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent X-ray diffractive imaging experiments
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 411
EP  - 434
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a21/
LA  - ru
ID  - MBB_2017_12_2_a21
ER  - 
%0 Journal Article
%A S. A. Bobkov
%T Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent X-ray diffractive imaging experiments
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 411-434
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a21/
%G ru
%F MBB_2017_12_2_a21
S. A. Bobkov. Comparison study of different approaches to classification of diffraction images of biological particles obtained in coherent X-ray diffractive imaging experiments. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 411-434. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a21/

[1] Miao J., Ishikawa T., Johnson B., Anderson E. H., Lai B., Hodgson K. O., “High resolution 3D x-ray diffraction microscopy”, Physical Review Letters, 89:8 (2002), 088303 | DOI

[2] Chapman H. N., Nugent K. A., “Coherent lensless X-ray imaging”, Nature Photonics, 4:12 (2010), 833–839 | DOI

[3] Chapman H. N., Barty A., Bogan M. J., Boutet S., Frank M., Hau-Riege S. P., Marchesini S., Woods B. W., Bajt S., Benner W. H. et al., Femtosecond diffractive imaging with a soft-X-ray free-electron laser, 2006, arXiv: physics/0610044 | DOI

[4] Gaffney K. J., Chapman H. N., “Imaging atomic structure and dynamics with ultrafast X-ray scattering”, Science, 316:5830 (2007), 1444–1448 | DOI

[5] Seibert M. M., Ekeberg T., Maia F. R., Svenda M., Andreasson J., Jönsson O., Odić D., Iwan B., Rocker A., Westphal D. et al., “Single mimivirus particles intercepted and imaged with an X-ray laser”, Nature, 470:7332 (2011), 78–81 | DOI

[6] Mancuso A. P., Yefanov O. M., Vartanyants I. A., “Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities”, Journal of Biotechnology, 149:4 (2010), 229–237 | DOI

[7] Emma P., Akre R., Arthur J., Bionta R., Bostedt C., Bozek J., Brachmann A., Bucksbaum P., Coffee R., Decker F. et al., “First lasing and operation of ånangstrom-wavelength free-electron laser”, Nature Photonics, 4:9 (2010), 641–647 | DOI

[8] Ishikawa T., Aoyagi H., Asaka T., Asano Y., Azumi N., Bizen T., Ego H., Fukami K., Fukui T., Furukawa Y. et al., “A compact X-ray free-electron laser emitting in the sub-angstrom region”, Nature Photonics, 6:8 (2012), 540–544 | DOI

[9] Massimo A. et al. (eds.), The European X-Ray Free-Electron laser, Technical Design Report, European XFEL project team, Hamburg, Germany, 2007

[10] Neutze R., Wouts R., van der Spoel D., Weckert E., Hajdu J., “Potential for biomolecular imaging with femtosecond X-ray pulses”, Nature, 406:6797 (2000), 752–757 | DOI

[11] Lorenz U., Kabachnik N. M., Weckert E., Vartanyants I. A., “Impact of ultrafast electronic damage in single-particle x-ray imaging experiments”, Physical Review E, 86:5 (2012), 051911 | DOI

[12] Gorobtsov O. Y., Lorenz U., Kabachnik N. M., Vartanyants I. A., “Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs”, Physical Review E, 91:6 (2015), 062712 | DOI

[13] Ne-Te Duane Loh, Veit Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments”, Physical Review E, 80:2 (2009) | DOI

[14] Fienup J. R., “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 | DOI

[15] Fienup J. R., “Phase retrieval algorithms: a comparison”, Appl. Opt., 21:15 (1982), 2758 | DOI

[16] Chen C., Miao J., Wang C., Lee T., “Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method”, Physical Review B, 76:6 (2007), 064113 | DOI

[17] Yoon C. H., Schwander P., Abergel C., Andersson I., Andreasson J., Aquila A., Bajt S., Barthelmess M., Barty A., Bogan M. J. et al., “Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering”, Optics Express, 19:17 (2011), 16542–16549 | DOI

[18] Bobkov S. A., Teslyuk A. B., Kurta R. P., Gorobtsov O. Y., Yefanov O. M., Ilyin V. A., Senin R. A., Vartanyants I. A., “Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers”, Journal of Synchrotron Radiation, 22 (2015), 1345–1352 | DOI

[19] Bobkov S. A., Teslyuk A. B., Vartanyants I. A., Ilin V. A., “Klassifikatsiya difraktsionnykh izobrazhenii biologicheskikh makromolekul s raznymi tipami simmetrii v eksperimentakh po kogerentnoi rentgenovskoi difraktsionnoi mikroskopii”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 299–310 | DOI

[20] Maia F. R. N. C., “The Coherent X-ray Imaging Data Bank”, Nature Methods, 9:9 (2012), 854–855 | DOI

[21] Strüder L., Epp S., Rolles D., Hartmann R., Holl P., Lutz G., Soltau H., Eckart R., Reich C., Heinzinger K. et al., “Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 614:3 (2010), 483–496 | DOI

[22] Kassemeyer S., Steinbrener J., Lomb L., Hartmann E., Aquila A., Barty A., Martin A. V., Hampton C. Y., Bajt S., Barthelmess M. et al., “Femtosecond free-electron laser x-ray diffraction data sets for algorithm development”, Optics Express, 20:4 (2012), 4149–4158 | DOI

[23] Van Etten J. L., Burbank D. E., Xia Y., Meints R. H., “Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae”, Virology, 126:1 (1983), 117–125 | DOI

[24] Starodub D., Aquila A., Bajt S., Barthelmess M., Barty A., Bostedt C., Bozek J. D., Coppola N., Doak R. B., Epp S. W. et al., “Single-particle structure determination by correlations of snapshot X-ray diffraction patterns”, Nature Communications, 3 (2012), 1276 | DOI

[25] Hantke M. F., Hasse D., Maia F. R., Ekeberg T., John K., Svenda M., Loh N. D., Martin A. V., Timneanu N., Larsson D. S. et al., “High-throughput imaging of heterogeneous cell organelles with an X-ray laser”, Nature Photonics, 8:12 (2014), 943–949 | DOI | MR

[26] Van Der Schot G., Svenda M., Maia F. R., Hantke M. F., DePonte D. P., Seibert M. M., Aquila A., Schulz J., Kirian R. A., Liang M. et al., “Open data set of live cyanobacterial cells imaged using an X-ray laser”, Scientific Data, 3 (2016) | DOI

[27] Ting K. M., “Precision and Recall”, Encyclopedia of Machine Learning, Springer, 2010, 781 | MR

[28] Cortes C., Vapnik V., “Support-vector networks”, Machine Learning, 20:3 (1995), 273–297

[29] Rosenblatt F., Principles of neurodynamics. Perceptrons and the theory of brain mechanisms, 1961 | MR

[30] LeCun Y., Bengio Y., Hinton G., “Deep learning”, Nature, 521:7553 (2015), 436–444 | DOI | MR

[31] Henrich B., Becker J., Dinapoli R., Goettlicher P., Graafsma H., Hirsemann H., Klanner R., Krueger H., Mazzocco R., Mozzanica A. et al., “The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633 (2011), S11–S14 | DOI

[32] Fisher R. A., “The use of multiple measurements in taxonomic problems”, Annals of Human Genetics, 7:2 (1936), 179–188 | DOI

[33] Cover T. M., “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition”, IEEE Transactions on Electronic Computers, 1965, no. 3, 326–334 | DOI

[34] Steinhaus H., “Sur la division des corp materiels en parties”, Bull. Acad. Polon. Sci., 1:804 (1956), 801 | MR

[35] Lloyd S., “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28:2 (1982), 129–137 | DOI | MR

[36] Shi J., Malik J., “Normalized cuts and image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:8 (2000), 888–905 | DOI

[37] Ward J. H. Jr, “Hierarchical grouping to optimize an objective function”, Journal of the American Statistical Association, 58:301 (1963), 236–244 | DOI | MR

[38] Zhang T., Ramakrishnan R., Livny M., “BIRCH: an efficient data clustering method for very large databases”, Proceeding SIGMOD'96 Proceedings of the 1996 ACM SIGMOD international conference on Management of data, ACM SIGMOD Record, 25, no. 2, 1996, 103–114 | DOI

[39] Cheng Y., “Mean shift, mode seeking, and clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:8 (1995), 790–799 | DOI

[40] Frey B. J., Dueck D., “Clustering by passing messages between data points”, Science, 315:5814 (2007), 972–976 | DOI | MR

[41] Ester M., Kriegel H., Sander J., Xu X., “A density-based algorithm for discovering clusters in large spatial databases with noise”, KDD-96 Proceedings, 1996, 226–231

[42] Hahnloser R. H. R., Sarpeshkar R., Mahowald M. A., Douglas R. J., Seung H. S., “Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit”, Nature, 405:6789 (2000), 947–951 | DOI

[43] Bishop C. M., Pattern recognition and machine learning, 2006 | MR

[44] Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I., Salakhutdinov R. R., Improving neural networks by preventing co-adaptation of feature detectors, 2012, arXiv: 1207.0580

[45] Altarelli M., Kurta R. P., Vartanyants I. A., “X-ray cross-correlation analysis and local symmetries of disordered systems: General theory”, Physical Review B, 82:10 (2010), 104207 | DOI

[46] Kurta R. P., Dronyak R., Altarelli M., Weckert E., Vartanyants I. A., “Solution of the phase problem for coherent scattering from a disordered system of identical particles”, New Journal of Physics, 15:1 (2013), 013059 | DOI

[47] Pedrini B., Menzel A., Guizar-Sicairos M., Guzenko V., Gorelick S., David C., Patterson B. D., Abela R., “Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations”, Nature Communications, 4 (2013), 1647 | DOI

[48] Saldin D. K., Poon H., Schwander P., Uddin M., Schmidt M., “Reconstructing an icosahedral virus from single-particle diffraction experiments”, Optics Express, 19:18 (2011), 17318–17335 | DOI