Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" \emph{in silico}
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 559-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes aspects of the application of numerical simulation of fluid flows in clinical medicine with interventions on the human vascular system. The modeling method used in the study is verified using the data of the doppler sonography of the patient underwent vascular replacement. It was shown that the deviation between the numerical experiment and the clinical data — pressure curves at the inlet and outlet of the studied vessel, is 20 %. The obtained quantitative characteristics of the flow: peak systolic velocity, final diastolic velocity, minimum diastolic velocity, resistivity index, pulsatility index, systole/diastole index are comparable between verification and experimental data. Thus, for the proximal site of the clinical vessel the corresponding indices were 96.5 cm/s; 4.5 cm/s; 36.2 cm/s; 1.05; 11.5; 21.3. For simulation, 107.9 cm/s; 4.44 cm/s; 43.9 cm/s; 1.05; 12.0; 24.3. In addition, the work describes the application of tested method in two clinical vascular prostheses "KemAngioprotez" for the assessment of zones of increased shear stress and, thus, the risk of thrombus formation. It is shown that the distribution of critical zones corresponds to zones of anastomosis between prosthesis segments, which may be a potential location for optimization of the device.
@article{MBB_2017_12_2_a2,
     author = {K. Yu. Klyshnikov and E. A. Ovcharenko and V. G. Borisov and I. N. Sizova and N. N. Burkov and A. V. Batranin and Yu. A. Kudryavtseva and Yu. N. Zakharov and Yu. I. Shokin},
     title = {Modeling of the hemodynamics of vascular prostheses {"Kemangiprotez"} \emph{in silico}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {559--569},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a2/}
}
TY  - JOUR
AU  - K. Yu. Klyshnikov
AU  - E. A. Ovcharenko
AU  - V. G. Borisov
AU  - I. N. Sizova
AU  - N. N. Burkov
AU  - A. V. Batranin
AU  - Yu. A. Kudryavtseva
AU  - Yu. N. Zakharov
AU  - Yu. I. Shokin
TI  - Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" \emph{in silico}
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 559
EP  - 569
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a2/
LA  - ru
ID  - MBB_2017_12_2_a2
ER  - 
%0 Journal Article
%A K. Yu. Klyshnikov
%A E. A. Ovcharenko
%A V. G. Borisov
%A I. N. Sizova
%A N. N. Burkov
%A A. V. Batranin
%A Yu. A. Kudryavtseva
%A Yu. N. Zakharov
%A Yu. I. Shokin
%T Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" \emph{in silico}
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 559-569
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a2/
%G ru
%F MBB_2017_12_2_a2
K. Yu. Klyshnikov; E. A. Ovcharenko; V. G. Borisov; I. N. Sizova; N. N. Burkov; A. V. Batranin; Yu. A. Kudryavtseva; Yu. N. Zakharov; Yu. I. Shokin. Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" \emph{in silico}. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 559-569. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a2/

[1] Stepanov N. G., “Kachestvo zhizni patsienta i ee prodolzhitelnost posle amputatsii”, Angiologiya i sosudistaya khirurgiya, 10:4 (2004), 13–16

[2] Savelev V. S., 50 lektsii po khirurgii, Media Medica, M., 2003, 39–48

[3] Burkov N. N., Zhuravleva I. Yu., Barbarash L. S., “Prognozirovanie riska razvitiya trombozov i stenozov bioprotezov «KemAngioprotez» putem postroeniya matematicheskoi modeli”, Kompleksnye problemy serdechno-sosudistykh zabolevanii, 2013, no. 4, 5–11

[4] Ivchenko A. O., Shvedov A. N., Ivchenko O. A., “Sosudistye protezy, ispolzuemye pri rekonstruktivnykh operatsiyakh na magistralnykh arteriyakh nizhnikh konechnostei”, Byulleten sibirskoi meditsiny, 16:1 (2017), 132–139 | DOI

[5] Martin C., Sun W., “Biomechanical characterization of aortic valve tissue in humans and common animal models”, Journal of Biomedical Materials Research. Part A, 100:6 (2012) | DOI

[6] Barbarash L. S., Ivanov S. V., Zhuravleva I. Yu., Anufriev A. I., Kazachek Ya. V., Kudryavtseva Yu. A., Zinets M. G., “12-letnii opyt ispolzovaniya bioprotezov dlya zamescheniya infraingvinalnykh arterii”, Angiologiya i sosudistaya khirurgiya, 12:3 (2006), 91–97

[7] Mukhamadiyarov R. A., Rutkovskaya N. V., Milto I. V., Vasyukov G. Yu., Barbarash L. S., “Patogeneticheskie paralleli kaltsifikatsii nativnykh klapanov aorty i ksenogennykh bioprotezov klapanov serdtsa”, Geny kletki, 11:3 (2016), 72–79

[8] Rukhlenko O. S., Dudchenko O. A., Zlobina K. E., Guria G. T., “Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress”, PLoS ONE, 10:7 (2015), e0134028 | DOI

[9] Rumbaut R. E., Thiagarajan P., Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis, Morgan Claypool Life Sciences, San Rafael, CA, 2010, 11–27

[10] Ruggeri Z. M., “The role of von Willebrand factor in thrombus formation”, Thrombosis research, 120, Suppl. 1 (2007), 5–9 | DOI

[11] Qian M., Niu L., Wong K. K., Abbott D., Zhou Q., Zheng H., “Pulsatile flow characterization in a vessel phantom with elastic wall using ultrasonic particle image velocimetry technique: the impact of vessel stiffness on flow dynamics”, IEEE Trans Biomed Eng., 61:9 (2014), 2444–2450 | DOI

[12] Schiller N. K., Franz T., Weerasekara N. S., Zilla P., Reddy B. D., “A simple fluid-structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts”, Comput Methods Biomech Biomed Engin., 13:6 (2010), 773–781 | DOI | MR

[13] Fojas J., De Leon R., “Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow”, APCBEE Procedia, 2013, no. 7, 86–92 | DOI

[14] Yeow S. L., Leo H. L., “Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm”, Computational and Mathematical Methods in Medicine, 2016 | DOI

[15] Wen J., Zheng T. H., Jiang W. T., Deng X. Y., Fan Y. B., “A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation”, ASAIO J., 57:5 (2011), 399–406 | DOI

[16] Pinto S., Doutel E., Campos J., Miranda J., “Blood analog fluid flow in vessels with stenosis: Development of an openfoam code to simulate pulsatile flow and elasticity of the fluid”, APCBEE Procedia, 2013, no. 7, 73–79 | DOI

[17] Loth F., Fischer P. F., Bassiouny H. S., “Blood flow in end-toside anastomoses”, Ann. Rev. Fluid Mech., 40 (2008), 367–393 | DOI | MR

[18] Kabinejadian F., Ghista D., Nezhadian M. K., Leo H. L., “Hemodynamics of Coronary Artery Bypass Grafting: Conventional vs. Innovative Anastomotic Configuration Designs for Enhancing Patency”, Coronary Graft Failure. State of The Art, 2016 | DOI

[19] Lin C.-L., Srivastava A., Coffey D., Keefe D., Horner M., Swenson M., Erdman A., “A System for Optimizing Medical Device Development Using Finite Element Analysis Predictions”, Journal of Medical Devices, 8:2 (2014), 0209411–0209413 | DOI

[20] Morgan A. E., Pantoja J. L., Weinsaft J., Grossi E., Guccione J. M., Ge L., Ratcliffe M., “Finite Element Modeling of Mitral Valve Repair”, J. Biomech. Eng., 138:2 (2016), 021009 | DOI | MR

[21] Lee L. C., Ge L., Zhang Z., Pease M., Nikolic S. D., Mishra R., Guccione J. M., “Patient-specific finite element modeling of the Cardiokinetix Parachute\circledR device: Effects on left ventricular wall stress and function”, Medical Biological Engineering Computing, 52:6 (2014), 557–566 | DOI

[22] Boyd A., Kuhn D., Lozowy R., Kulbisky G., “Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture”, J. Vasc. Surg., 63:6 (2016), 1613–1619 | DOI

[23] Gharahi H., Zambrano B., Zhu D., DeMarco K., Baek S., “Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging”, Int. J. Adv. Eng. Sci. Appl. Math., 8:1 (2016), 40–60 | DOI | MR

[24] Geers A. J., Morales H. G., Larrabide I., Butakoff C., Bijlenga P., Frangi A. F., “Wall shear stress at the initiation site of cerebral aneurysms”, Biomech. Model Mechanobiol., 16 (2016), 97–115 | DOI

[25] Batranin A. V., Chakhlov S. V., Kapranov B. I., Klimenov V. A., Grinev D. V., “Design of the x-ray micro-CT scanner tolmi-150–10 and its perspective application in non-destructive evaluation”, Applied Mechanics and Materials, 379 (2013), 3–10 | DOI

[26] Caro C., Pedley T., Schroter R., Seed W., Parker K., The Mechanics of the Circulation, Cambridge University Press, Cambridge, 2011, 15–32 | DOI

[27] Alastruey J., Parker K. H., Sherwin S. J., “Arterial pulse wave haemodynamics”, 11th International Conference on Pressure Surges: Virtual PiE Led t/a BHR Group, Chapter 7, ed. S. Anderson, 2012, 401–442

[28] OpenCFD. OpenFOAM — User guide — Version 3.0, , The OpenFOAM Foundation, 2015 (data obrascheniya 02.07.2017) https://openfoam.org/

[29] Weller H. G., Tabor G., Jasak H., Fureby C., “A tensorial approach to computational continuum mechanics using object-oriented techniques”, Computers in physics, 12:6 (1998), 620–631 | DOI

[30] Ayachit Utkarsh, The ParaView Guide: A Parallel Visualization Application, Kitware, 2015

[31] SALOME, Open source integration platform for numerical simulation, (data obrascheniya 02.07.2017) http://www.salome-platform.org/

[32] Lee W., “General principles of carotid Doppler ultrasonography”, Ultrasonography, 33:1 (2014), 11–17 | DOI

[33] Li Z., Kleinstreuer C., “Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model”, J. Biomech., 39:12 (2006), 2264–2273 | DOI

[34] Xiong G., Figueroa C. A., Xiao N., Taylor C. A., “Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties”, International journal for numerical methods in biomedical engineering, 27:7 (2011), 1000–1016 | DOI | MR