Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 496-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modelling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of the life sciences, e.g., population dynamics, epidemiology, immunology, physiology, neural networks. The time delays in these models take into account a dependence of the present state of the modelled system on its past history. The delay can be related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period and so on. Due to an infinite-dimensional nature of DDEs, analytical studies of the corresponding mathematical models can only give limited results. Therefore, a numerical analysis is the major way to achieve both a qualitative and quantitative understanding of the model dynamics. A bifurcation analysis of a dynamical system is used to understand how solutions and their stability change as the parameters in the system vary. The package DDE-BIFTOOL is the first general-purpose package for bifurcation analysis of DDEs. This package can be used to compute and analyze the local stability of steady-state (equilibria) and periodic solutions of a given system as well as to study the dependence of these solutions on system parameters via continuation. Further one can compute and continue several local and global bifurcations: fold and Hopf bifurcations of steady states; folds, period doublings and torus bifurcations of periodic orbits; and connecting orbits between equilibria. In this paper we describe the structure of DDE-BIFTOOL, numerical methods implemented in the package and we illustrate the use of the package using a certain DDE system.
@article{MBB_2017_12_2_a18,
     author = {T. Luzyanina and J. Sieber and K. Engelborghs and G. Samaey and D. Roose},
     title = {Numerical bifurcation analysis of mathematical models with time delays with the package {DDE-BIFTOOL}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {496--520},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/}
}
TY  - JOUR
AU  - T. Luzyanina
AU  - J. Sieber
AU  - K. Engelborghs
AU  - G. Samaey
AU  - D. Roose
TI  - Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 496
EP  - 520
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/
LA  - en
ID  - MBB_2017_12_2_a18
ER  - 
%0 Journal Article
%A T. Luzyanina
%A J. Sieber
%A K. Engelborghs
%A G. Samaey
%A D. Roose
%T Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 496-520
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/
%G en
%F MBB_2017_12_2_a18
T. Luzyanina; J. Sieber; K. Engelborghs; G. Samaey; D. Roose. Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 496-520. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/

[1] Argyris J., Faust G., Haase M., An Exploration of Chaos — An Introduction for Natural Scientists and Engineers, North Holland, Amsterdam, 1994 | MR

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the Theory of Functional Differential Equations, Nauka, M., 1991 (in Russ.) | MR

[3] Barton D. A. W., Krauskopf B., Wilson R. E., “Collocation schemes for periodic solutions of neutral delay differential equations”, Journal of Difference Equations and Applications, 12:11 (2006), 1087–1101 | DOI | MR

[4] Bellman R., Cooke K. L., Differential-Difference Equations, Mathematics in science and engineering, 6, Academic Press, 1963 | MR

[5] Breda D., Maset S., Vermiglio R., “TRACE-DDE: a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations”, Topics in Time Delay Systems: Analysis, Algorithms, and Control, Lecture Notes in Control and Information Sciences, 388, eds. J. J. Loiseau, W. Michiels, S.-I. Niculescu, R. Sipahi, Springer, New York, 2009, 145–155 | DOI | MR

[6] Chow S.-N., Hale J. K., Methods of Bifurcation Theory, Springer-Verlag, 1982 | MR

[7] Corwin S. P., Sarafyan D., Thompson S., “DKLAG6: A Code Based on Continuously Imbedded Sixth Order Runge-Kutta Methods for the Solution of State Dependent Functional”, Applied Numerical Mathematics, 24:2–3 (1997), 319–330 | DOI | MR

[8] Dankowicz H., Schilder F., Recipes for Continuation, Computer Science and Engineering, SIAM, 2013 | MR

[9] Dhooge A., Govaerts W., Kuznetsov Y. A., “MatCont: A Matlab package for numerical bifurcation analysis of ODEs”, ACM Transactions on Mathematical Software, 29:2 (2003), 141–164 | DOI | MR

[10] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, 1995 | DOI | MR

[11] Doedel E. J., “Lecture notes on numerical analysis of nonlinear equations”, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, eds. Krauskopf B., Osinga H. M., Galan-Vioque J., Springer-Verlag, Dordrecht, 2007, 1–49 | MR

[12] Doedel E. J., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B., Wang X., AUTO97: Continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/publications/auto97.ps.gz

[13] Driver R. D., Ordinary and Delay Differential Equations, Applied Mathematical Science, 20, Springer-Verlag, 1977 | DOI | MR

[14] El'sgol'ts L. E., Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in science and engineering, 105, Academic Press, 1973 | MR

[15] Engelborghs K., Numerical Bifurcation Analysis of Delay Differential Equations, PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium, 2000

[16] Engelborghs K., Doedel E., “Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations”, Numerische Mathematik, 91:4 (2002), 627–648 | DOI | MR

[17] Engelborghs K., Luzyanina T., In ťHout K. J., Roose D., “Collocation methods for the computation of periodic solutions of delay differential equations”, SIAM J. Sci. Comput., 22 (2000), 1593–1609 | DOI | MR

[18] Engelborghs K., Luzyanina T., Roose D., “Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL”, ACM Transactions on Mathematical Software, 28:1 (2002), 1–21 | DOI | MR

[19] Engelborghs K., Luzyanina T., Samaey G., DDE-BIFTOOL v.2.00: a Matlab package for bifurcation analysis of delay differential equations, Report TW 330, Katholieke Universiteit Leuven, 2001

[20] Engelborghs K., Roose D., “Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations”, Advances in Computational Mathematics, 10:3–4 (1999), 271–289 | DOI | MR

[21] Engelborghs K., Roose D., “On stability of LMS-methods and characteristic roots of delay differential equations”, SIAM J. Num. Analysis, 40:2 (2002), 629–650 | DOI | MR

[22] Enright W. H., Hayashi H., “A delay differential equation solver based on a continuous Runge-Kutta method with defect control”, Numer. Algorithms, 16 (1997), 349–364 | DOI | MR

[23] Ermentrout B., XPPAUT 3.91 — The differential equations tool, University of Pittsburgh, Pittsburgh, 1998 http://www.pitt.edu/?phase/

[24] Govaerts W. J. F., Numerical Methods for Bifurcations of Dynamical Equilibria, Miscellaneous Titles in Applied Mathematics Series, SIAM, 2000 | MR

[25] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983 | MR

[26] Guglielmi N., Hairer E., “Stiff delay equations”, Scholarpedia, 2:11 (2007), 2850 | DOI

[27] Hale J. K., Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer-Verlag, 1977 | DOI | MR

[28] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, 1993 | DOI | MR

[29] Hartung F., Krisztin T., Walther H.-O., Wu J., “Functional differential equations with state-dependent delays: Theory and applications”, Handbook of Differential Equations: Ordinary Differential Equations, Chapter 5, v. 3, eds. P. Drabek, A. Canada, A. Fonda, North-Holland, 2006, 435–545 | DOI | MR

[30] Hong-Jiong T., Jiao-Xun K., “The numerical stability of linear multistep methods for delay differential equations with many delays”, SIAM Journal of Numerical Analysis, 33:3 (1996), 883–889 | DOI | MR

[31] MATLAB, The MathWorks Inc., Natick, Massachusetts, United States

[32] Kolmanovskii V., Myshkis A., Applied Theory of Functional Differential Equations, Mathematics and Its Applications, 85, Kluwer Academic Publishers, 1992 | MR

[33] Kolmanovskii V. B., Myshkis A., Introduction to the theory and application of functional differential equations, Mathematics and its applications, 463, Kluwer Academic Publishers, 1999 | MR

[34] Kolmanovskii V. B., Nosov V. R., Stability of functional differential equations, Mathematics in Science and Engineering, 180, Academic Press, 1986 | MR

[35] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 2004 | DOI | MR

[36] Luzyanina T., Engelborghs K., Roose D., “Numerical bifurcation analysis of differential equations with state-dependent delay”, Internat. J. Bifur. Chaos, 11:3 (2001), 737–754 | DOI | MR

[37] Luzyanina T., Roose D., “Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations”, Journal of Computational and Applied Mathematics, 72 (1996), 379–392 | DOI | MR

[38] Mallet-Paret J., Nussbaum R. D., “Stability of periodic solutions of state-dependent delay-differential equations”, Journal of Differential Equations, 250:11 (2011), 4085–4103 | DOI | MR

[39] Paul C. A. H., A user-guide to Archi — an explicit Runge–Kutta code for solving delay and neutral differential equations, Technical Report 283, The University of Manchester, Manchester Center for Computational Mathematics, 1997 | MR

[40] Roose D., Szalai R., “Continuation and bifurcation analysis of delay differential equations”, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, eds. Krauskopf B., Osinga H. M., Galan-Vioque J., Springer-Verlag, Dordrecht, 2007, 51–75 | MR

[41] Samaey G., Engelborghs K., Roose D., Numerical computation of connecting orbits in delay differential equations, Report TW 329, , Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001, 20 pp. http://www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW329.abs.html

[42] Seydel R., Practical Bifurcation and Stability Analysis — From Equilibrium to Chaos, Interdisciplinary Applied Mathematics, 5, Springer-Verlag, Berlin, 1994 | MR

[43] Shampine L. F., Thompson S., Solving delay differential equations with dde23, Submitted, 2000 | MR

[44] Shayer L. P., Campbell S. A., “Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays”, SIAM J. Applied Mathematics, 61:2 (2000), 673–700 | DOI | MR

[45] Sieber J., “Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations”, Discrete and Continuous Dynamical Systems A, 32:8 (2012), 2607–2651 | DOI | MR

[46] Szalai R., Stépán G., Hogan S. J., “Continuation of bifurcations in periodic delay differential equations using characteristic matrices”, SIAM Journal on Scientific Computing, 28:4 (2006), 1301–1317 | DOI | MR