Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 496-520

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modelling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of the life sciences, e.g., population dynamics, epidemiology, immunology, physiology, neural networks. The time delays in these models take into account a dependence of the present state of the modelled system on its past history. The delay can be related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period and so on. Due to an infinite-dimensional nature of DDEs, analytical studies of the corresponding mathematical models can only give limited results. Therefore, a numerical analysis is the major way to achieve both a qualitative and quantitative understanding of the model dynamics. A bifurcation analysis of a dynamical system is used to understand how solutions and their stability change as the parameters in the system vary. The package DDE-BIFTOOL is the first general-purpose package for bifurcation analysis of DDEs. This package can be used to compute and analyze the local stability of steady-state (equilibria) and periodic solutions of a given system as well as to study the dependence of these solutions on system parameters via continuation. Further one can compute and continue several local and global bifurcations: fold and Hopf bifurcations of steady states; folds, period doublings and torus bifurcations of periodic orbits; and connecting orbits between equilibria. In this paper we describe the structure of DDE-BIFTOOL, numerical methods implemented in the package and we illustrate the use of the package using a certain DDE system.
@article{MBB_2017_12_2_a18,
     author = {T. Luzyanina and J. Sieber and K. Engelborghs and G. Samaey and D. Roose},
     title = {Numerical bifurcation analysis of mathematical models with time delays with the package {DDE-BIFTOOL}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {496--520},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/}
}
TY  - JOUR
AU  - T. Luzyanina
AU  - J. Sieber
AU  - K. Engelborghs
AU  - G. Samaey
AU  - D. Roose
TI  - Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 496
EP  - 520
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/
LA  - en
ID  - MBB_2017_12_2_a18
ER  - 
%0 Journal Article
%A T. Luzyanina
%A J. Sieber
%A K. Engelborghs
%A G. Samaey
%A D. Roose
%T Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 496-520
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/
%G en
%F MBB_2017_12_2_a18
T. Luzyanina; J. Sieber; K. Engelborghs; G. Samaey; D. Roose. Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 496-520. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/