Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_2_a18, author = {T. Luzyanina and J. Sieber and K. Engelborghs and G. Samaey and D. Roose}, title = {Numerical bifurcation analysis of mathematical models with time delays with the package {DDE-BIFTOOL}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {496--520}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/} }
TY - JOUR AU - T. Luzyanina AU - J. Sieber AU - K. Engelborghs AU - G. Samaey AU - D. Roose TI - Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 496 EP - 520 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/ LA - en ID - MBB_2017_12_2_a18 ER -
%0 Journal Article %A T. Luzyanina %A J. Sieber %A K. Engelborghs %A G. Samaey %A D. Roose %T Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 496-520 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/ %G en %F MBB_2017_12_2_a18
T. Luzyanina; J. Sieber; K. Engelborghs; G. Samaey; D. Roose. Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 496-520. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a18/
[1] Argyris J., Faust G., Haase M., An Exploration of Chaos — An Introduction for Natural Scientists and Engineers, North Holland, Amsterdam, 1994 | MR
[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the Theory of Functional Differential Equations, Nauka, M., 1991 (in Russ.) | MR
[3] Barton D. A. W., Krauskopf B., Wilson R. E., “Collocation schemes for periodic solutions of neutral delay differential equations”, Journal of Difference Equations and Applications, 12:11 (2006), 1087–1101 | DOI | MR
[4] Bellman R., Cooke K. L., Differential-Difference Equations, Mathematics in science and engineering, 6, Academic Press, 1963 | MR
[5] Breda D., Maset S., Vermiglio R., “TRACE-DDE: a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations”, Topics in Time Delay Systems: Analysis, Algorithms, and Control, Lecture Notes in Control and Information Sciences, 388, eds. J. J. Loiseau, W. Michiels, S.-I. Niculescu, R. Sipahi, Springer, New York, 2009, 145–155 | DOI | MR
[6] Chow S.-N., Hale J. K., Methods of Bifurcation Theory, Springer-Verlag, 1982 | MR
[7] Corwin S. P., Sarafyan D., Thompson S., “DKLAG6: A Code Based on Continuously Imbedded Sixth Order Runge-Kutta Methods for the Solution of State Dependent Functional”, Applied Numerical Mathematics, 24:2–3 (1997), 319–330 | DOI | MR
[8] Dankowicz H., Schilder F., Recipes for Continuation, Computer Science and Engineering, SIAM, 2013 | MR
[9] Dhooge A., Govaerts W., Kuznetsov Y. A., “MatCont: A Matlab package for numerical bifurcation analysis of ODEs”, ACM Transactions on Mathematical Software, 29:2 (2003), 141–164 | DOI | MR
[10] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, 1995 | DOI | MR
[11] Doedel E. J., “Lecture notes on numerical analysis of nonlinear equations”, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, eds. Krauskopf B., Osinga H. M., Galan-Vioque J., Springer-Verlag, Dordrecht, 2007, 1–49 | MR
[12] Doedel E. J., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B., Wang X., AUTO97: Continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/publications/auto97.ps.gz
[13] Driver R. D., Ordinary and Delay Differential Equations, Applied Mathematical Science, 20, Springer-Verlag, 1977 | DOI | MR
[14] El'sgol'ts L. E., Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Mathematics in science and engineering, 105, Academic Press, 1973 | MR
[15] Engelborghs K., Numerical Bifurcation Analysis of Delay Differential Equations, PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium, 2000
[16] Engelborghs K., Doedel E., “Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations”, Numerische Mathematik, 91:4 (2002), 627–648 | DOI | MR
[17] Engelborghs K., Luzyanina T., In ťHout K. J., Roose D., “Collocation methods for the computation of periodic solutions of delay differential equations”, SIAM J. Sci. Comput., 22 (2000), 1593–1609 | DOI | MR
[18] Engelborghs K., Luzyanina T., Roose D., “Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL”, ACM Transactions on Mathematical Software, 28:1 (2002), 1–21 | DOI | MR
[19] Engelborghs K., Luzyanina T., Samaey G., DDE-BIFTOOL v.2.00: a Matlab package for bifurcation analysis of delay differential equations, Report TW 330, Katholieke Universiteit Leuven, 2001
[20] Engelborghs K., Roose D., “Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations”, Advances in Computational Mathematics, 10:3–4 (1999), 271–289 | DOI | MR
[21] Engelborghs K., Roose D., “On stability of LMS-methods and characteristic roots of delay differential equations”, SIAM J. Num. Analysis, 40:2 (2002), 629–650 | DOI | MR
[22] Enright W. H., Hayashi H., “A delay differential equation solver based on a continuous Runge-Kutta method with defect control”, Numer. Algorithms, 16 (1997), 349–364 | DOI | MR
[23] Ermentrout B., XPPAUT 3.91 — The differential equations tool, University of Pittsburgh, Pittsburgh, 1998 http://www.pitt.edu/?phase/
[24] Govaerts W. J. F., Numerical Methods for Bifurcations of Dynamical Equilibria, Miscellaneous Titles in Applied Mathematics Series, SIAM, 2000 | MR
[25] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983 | MR
[26] Guglielmi N., Hairer E., “Stiff delay equations”, Scholarpedia, 2:11 (2007), 2850 | DOI
[27] Hale J. K., Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer-Verlag, 1977 | DOI | MR
[28] Hale J. K., Verduyn Lunel S. M., Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, 1993 | DOI | MR
[29] Hartung F., Krisztin T., Walther H.-O., Wu J., “Functional differential equations with state-dependent delays: Theory and applications”, Handbook of Differential Equations: Ordinary Differential Equations, Chapter 5, v. 3, eds. P. Drabek, A. Canada, A. Fonda, North-Holland, 2006, 435–545 | DOI | MR
[30] Hong-Jiong T., Jiao-Xun K., “The numerical stability of linear multistep methods for delay differential equations with many delays”, SIAM Journal of Numerical Analysis, 33:3 (1996), 883–889 | DOI | MR
[31] MATLAB, The MathWorks Inc., Natick, Massachusetts, United States
[32] Kolmanovskii V., Myshkis A., Applied Theory of Functional Differential Equations, Mathematics and Its Applications, 85, Kluwer Academic Publishers, 1992 | MR
[33] Kolmanovskii V. B., Myshkis A., Introduction to the theory and application of functional differential equations, Mathematics and its applications, 463, Kluwer Academic Publishers, 1999 | MR
[34] Kolmanovskii V. B., Nosov V. R., Stability of functional differential equations, Mathematics in Science and Engineering, 180, Academic Press, 1986 | MR
[35] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 2004 | DOI | MR
[36] Luzyanina T., Engelborghs K., Roose D., “Numerical bifurcation analysis of differential equations with state-dependent delay”, Internat. J. Bifur. Chaos, 11:3 (2001), 737–754 | DOI | MR
[37] Luzyanina T., Roose D., “Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations”, Journal of Computational and Applied Mathematics, 72 (1996), 379–392 | DOI | MR
[38] Mallet-Paret J., Nussbaum R. D., “Stability of periodic solutions of state-dependent delay-differential equations”, Journal of Differential Equations, 250:11 (2011), 4085–4103 | DOI | MR
[39] Paul C. A. H., A user-guide to Archi — an explicit Runge–Kutta code for solving delay and neutral differential equations, Technical Report 283, The University of Manchester, Manchester Center for Computational Mathematics, 1997 | MR
[40] Roose D., Szalai R., “Continuation and bifurcation analysis of delay differential equations”, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, eds. Krauskopf B., Osinga H. M., Galan-Vioque J., Springer-Verlag, Dordrecht, 2007, 51–75 | MR
[41] Samaey G., Engelborghs K., Roose D., Numerical computation of connecting orbits in delay differential equations, Report TW 329, , Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001, 20 pp. http://www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW329.abs.html
[42] Seydel R., Practical Bifurcation and Stability Analysis — From Equilibrium to Chaos, Interdisciplinary Applied Mathematics, 5, Springer-Verlag, Berlin, 1994 | MR
[43] Shampine L. F., Thompson S., Solving delay differential equations with dde23, Submitted, 2000 | MR
[44] Shayer L. P., Campbell S. A., “Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays”, SIAM J. Applied Mathematics, 61:2 (2000), 673–700 | DOI | MR
[45] Sieber J., “Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations”, Discrete and Continuous Dynamical Systems A, 32:8 (2012), 2607–2651 | DOI | MR
[46] Szalai R., Stépán G., Hogan S. J., “Continuation of bifurcations in periodic delay differential equations using characteristic matrices”, SIAM Journal on Scientific Computing, 28:4 (2006), 1301–1317 | DOI | MR