Phases in water octamer: molecular point of view
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 487-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results of modeling of phases and phase transition in the water octamer with TIP4P interaction potential from molecular point of view are presented. In the study the molecular dynamics method was applied. The advantage of using the dynamical characteristics of individual molecules in the cluster is shown, particularly, the distribution of the potential energy, to identify the phase of the cluster. The criteria for solid like and liquid like phases in the octamer are suggested and the connection isomer’s structures with dynamics are discussed. The role of different types of H-bonds (DDA- and DAA-type) in dynamical characteristics of the cluster is clarified.
@article{MBB_2017_12_2_a17,
     author = {E. D. Belega and P. V. Elyutin and D. N. Trubnikov},
     title = {Phases in water octamer: molecular point of view},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {487--495},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a17/}
}
TY  - JOUR
AU  - E. D. Belega
AU  - P. V. Elyutin
AU  - D. N. Trubnikov
TI  - Phases in water octamer: molecular point of view
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 487
EP  - 495
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a17/
LA  - en
ID  - MBB_2017_12_2_a17
ER  - 
%0 Journal Article
%A E. D. Belega
%A P. V. Elyutin
%A D. N. Trubnikov
%T Phases in water octamer: molecular point of view
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 487-495
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a17/
%G en
%F MBB_2017_12_2_a17
E. D. Belega; P. V. Elyutin; D. N. Trubnikov. Phases in water octamer: molecular point of view. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 2, pp. 487-495. http://geodesic.mathdoc.fr/item/MBB_2017_12_2_a17/

[1] Berry R. S., Smirnov B. M., “Phase transitions in different types of clusters”, Physics-Uspekhi, 52:2 (2009), 137–164 | DOI

[2] Rodriguez J., Laria D., Marceca E. J., Estrin D. A., “Isomerization, melting, and polarity of model water clusters: (H$_2$O)$_6$ and (H$_2$O)$_8$”, J. Chem. Phys., 110:18 (1999), 9039–9047 | DOI

[3] Wales D. J., Ohmine I., “Structure, dynamics, and thermodynamics of model (H$_2$O)$_8$ and (H$_2$O)$_{20}$ clusters”, J. Chem. Phys., 98 (1993), 7245–7256 | DOI

[4] Tsai C. J., Jordan K. D., “Monte Carlo simulation of (H$_2$O)$_8$: Evidence for a lowenergy S$_4$ structure and characterization of the solid $\leftrightarrow$ liquid transition”, J. Chem. Phys., 95 (1991), 3850–3853 | DOI

[5] Tsai C. J., Jordan K. D., “Theoretical study of small water clusters: low-energy fused cubic structures for (H$_2$O)$_n$, $n = 8, 12, 16$, and $20$”, J. Phys. Chem., 97 (1993), 5208–5210 | DOI

[6] Nigra P., Carignano M. A., Kais S., “Study of phase changes of the water octamer using parallel tempering and multihistogram methods”, J. Chem. Phys., 115:6 (2001), 2621–2628 | DOI

[7] Carignano M. A., “Monte Carlo simulations of small water clusters: microcanonical vs canonical ensemble”, Chem. Phys. Lett., 361 (2002), 291–297 | DOI

[8] Buck U., Ettischer I., Melzer M., Buch V., Sadlej J., “Structure and Spectra of Three-Dimensional (H$_2$O)$_n$ Clusters, $n=5, 8, 9, 10$”, Phys. Rev. Lett., 80:12 (1998), 2578–2581 | DOI

[9] Lee H. M., Suh SB., Lee J. Y., Tarakeshwar P., Kim K. S., “Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer”, J. Chem. Phys., 112:22 (2000), 9759–9772 | DOI

[10] Wales D. J., Hodges M. P., “Global minima of water clusters (H$_{2O}$)$_n$, $n\leqslant 21$, described by an empirical potential”, Chem. Phys. Lett., 286 (1998), 65–72 | DOI | MR

[11] James T., Wales D. J., Hernández-Rojas, “Global minima for water clusters (H$_2$O)$_n$, $n\leqslant 21$ described by a five-site empirical potential”, J. Chem. Phys. Lett., 415 (2005), 302–307 | DOI

[12] Laria D., Rodriguez J., Dellago C., Chandler D., “Dynamical aspects of isomerization and melting transitions in [H$_2$O]$_8$”, J. Phys. Chem. A, 105 (2001), 2646–2651 | DOI

[13] Knochenmuss R., Leutwyler S., “Structures and vibrational spectra of water clusters in the self-consistent-field approximation”, J. Chem. Phys., 96 (1992), 5233–5244 | DOI

[14] Belair S. D., Francisco J. S., “Stability of the cubic water octamer”, Phys. Rev. A, 67 (2003), 063206 | DOI

[15] Pedulla J. M., Jordan K. D., “Melting behavior of the (H$_2$O)$_6$ and (H$_2$O)$_8$ clusters”, Chem. Phys., 239 (1998), 593–601 | DOI

[16] Cole W. T. C., Farrell J. D., Wales D. J., Saykally R. J., “Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mm”, Science, 352 (2016), 1194–1197 | DOI

[17] Lindemann F. A., “The calculation of molecular vibration frequencies”, Physik. Z., 11 (1910), 609–612

[18] Gelman-Constantin J., Carignano M. A., Szleifer I., Marceca E. J., Corti H. R., “Structural transitions and dipole moment of water clusters (H$_2$O)$_n$, $n=4$–$100$”, J. Chem. Phys., 133 (2010), 024506 | DOI

[19] Schnabel S., Seaton D. T., Landau D. P., Bachman M., “Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems”, Phys. Rev. E, 84 (2011), 011127 | DOI

[20] Junqi Yin, Landau D. P., “Structural properties and thermodynamics of water clusters: A Wang-Landau study”, J. Chem. Phys., 134 (2011), 074501 | DOI

[21] Schmidt M., von Issendorff B., “Gas-phase calorimetry of protonated water clusters”, J. Chem. Phys., 136 (2012), 164307 | DOI

[22] Belega E. D., Tatarenko K. A., Trubnikov D. N., Cheremukhin E. A., “The dynamics of water hexamer isomerization”, Russian Journal of Physical Chemistry B, 3:3 (2009), 404–409 | DOI

[23] Belega E. D., Cheremukhin E. A., Elyutin P. V., Trubnikov D. N., “On the definition of the microcanonical temperature of small weakly bound molecular clusters”, Chem. Phys. Lett., 496 (2010), 167–171 | DOI

[24] Belega E. D., Trubnikov D. N., Cheremukhin E. A., “Melting of the water hexamer”, J. Structural Chemistry, 56 (2015), 52–57 | DOI

[25] Swope W. C., Andersen H. C., Berens H., Wilson K. R., “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters”, J. Chem. Phys., 76:1 (1982), 637–649 | DOI

[26] Tsai C. J., Jordan K. D., “Use of the histogram and jumpwalking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters”, J. Phys. Chem., 99 (1993), 6957–6970 | DOI

[27] Ore O., Theory of Graphs, Colloquium Publications, 38, American Mathematical Society, 1962 | MR

[28] Kalinichev A. G., Churakov S. V., “Thermodynamics and structure of molecular clusters in supercritical water”, Chem. Phys. Lett., 302 (1999), 411–417 | DOI

[29] Saykally R. J., Wales D. J., “Pinning Down the Water Hexamer”, Science, 336 (2012), 814–815 | DOI