The peculiarities of polaron motion in the molecular polynucleotide chains of finite length in the presence of localized excitations in the chain
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 204-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical experiments which demonstrate the possibility of polaron charge transfer in a homogeneous finite unclosed G/C DNA chain due to the interaction with localized excitations have been carried out in the absence of an electric field. As a model, which describes the dynamics of a DNA molecule, was considered the Peyrard–Bishop–Holstein model. It is shown that, depending on the parameters of the selected initial excitations and on the parameters of the chain, the polaron can move over long distances (about a thousand sites). It is also shown that the ability of a polaron to move and the character of this movement significantly depend on the relative positions of the polaron and the selected localized excitations.
@article{MBB_2017_12_1_a9,
     author = {A. N. Korshunova and V. D. Lakhno},
     title = {The peculiarities of polaron motion in the molecular polynucleotide chains of finite length in the presence of localized excitations in the chain},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {204--224},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a9/}
}
TY  - JOUR
AU  - A. N. Korshunova
AU  - V. D. Lakhno
TI  - The peculiarities of polaron motion in the molecular polynucleotide chains of finite length in the presence of localized excitations in the chain
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 204
EP  - 224
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a9/
LA  - ru
ID  - MBB_2017_12_1_a9
ER  - 
%0 Journal Article
%A A. N. Korshunova
%A V. D. Lakhno
%T The peculiarities of polaron motion in the molecular polynucleotide chains of finite length in the presence of localized excitations in the chain
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 204-224
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a9/
%G ru
%F MBB_2017_12_1_a9
A. N. Korshunova; V. D. Lakhno. The peculiarities of polaron motion in the molecular polynucleotide chains of finite length in the presence of localized excitations in the chain. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 204-224. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a9/

[1] Shinwari M. W., Deen M. J., Starikov E. B., Cuniberti G., “Electrical Conductance in Biological Molecules”, Advanced Functional Materials, 20:12 (2010), 1865–1883 | DOI

[2] Starikov E. B., “Electron-phonon coupling in DNA: a systematic study”, Philosophical Magazine, 85 (2005), 3435–3462 | DOI

[3] Zamora-Sillero E., Shapovalov A. V., Esteban F. J., “Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model”, Phys. Rev. E, 76 (2007), 066603 | DOI | MR

[4] Maniadis P., Kalosakas G., Rasmussen K. O., Bishop A. R., “ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI

[5] Komineas S., Kalosakas G., Bishop A. R., “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI

[6] Peyrard M., Cuesta-Lopez S., James G., Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21 (2008), 91–100 | DOI | MR

[7] Shigaev A. S., Ponomarev O. A., Lakhno V. D., “Theoretical and experimental investigations of DNA open states”, Mathematical Biology and Bioinformatics, 8:2 (2013), 553–664 (in Russ.) | DOI

[8] Lakhno V. D., “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 | DOI

[9] Offenhausser A., Rinald R. (eds.), Nanobioelectronics — for Electronics, Biology and Medicine, Springer, N.Y., 2009

[10] Taniguchi M., Kawai T., “DNA electronics”, Physica E, 33 (2006), 1–12 | DOI

[11] Eudres R. G., Cox D. L., Singh R. R. P., “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76 (2004), 195–214 | DOI

[12] Porath D., Cuniberti G., Di Felice R., “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 | DOI

[13] Lakhno V. D., “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133 | DOI

[14] Fialko N. S., Lakhno V. D., “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108 | DOI

[15] Conwell E. M., Rakhmanova S. V., “Polarons in DNA”, Proc. Natl. Acad. Sci., 97 (2000), 4556 | DOI

[16] Lakhno V. D., Korshunova A. N., “Formation of stationary electronic states in finite homogeneous molecular chains”, Mathematical Biology and Bioinformatics, 5 (2010), 1–29 | DOI

[17] Lakhno V. D., Fialko N. S., “Hole mobility in a homogeneous nucleotide chain”, JETP Letters, 78 (2003), 336–338 | DOI

[18] Berashevich J. A., Chakraborty T., “Thermodynamics of G.A mispairs in DNA: Continuum electrostatic model”, J. Chem. Phys., 130 (2009), 015101 | DOI

[19] Korshunova A. N., Lakhno V. D., “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206 | DOI

[20] Lakhno V. D., Korshunova A. N., “Electron motion in a Holstein molecular chain in an electric field”, Eur. Phys. J. B, 79 (2011), 147 | DOI

[21] Diaz E., Lima R. P. A., Dominguez-Adame F., “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI

[22] Rakhmanova S. V., Conwell E. M., “Polaron Motion in DNA”, J. Phys. Chem. B, 105 (2001), 2056 | DOI

[23] Berashevich J. A., Bookatz A. D., Chakraborty T., “The electric field effect and conduction in the Peyrard-Bishop-Holstein model”, J. Phys.: Condens. Matter, 20 (2008), 035207 | DOI

[24] Lakhno V. D., Chetverikov A. P., “Excitation of bubbles and breathers in DNA and their interaction with the charge carriers”, Mathematical Biology and Bioinformatics, 9:1 (2014), 4–19 (in Russ.) | DOI

[25] Chetverikov A. P., Ebeling W., Lakhno V. D., Shigaev A. S., Velarde M. G., “On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field - Mechanical control of electrons”, Eur. Phys. J. B, 89 (2016), 101 | DOI

[26] Hennig D., Starikov E. B., Archilla J. F. R., Palmero F., “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227 | DOI

[27] Starikov E. B., Lewis J. P., Sankey O. F., “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 | DOI

[28] Korshunova A. N., Lakhno V. D., “The peculiarities of polaron motion in the molecular polynucleotide chains of finite length”, Mathematical Biology and Bioinformatics, 11:2 (2016), 141–158 (in Russ.) | DOI

[29] Peyrard M., Bishop A. R., “Statistical mechanics of a nonlinear model for DNA denaturation”, Phys. Rev. Lett., 62 (1989), 2755–2758 | DOI

[30] Dauxois T., Peyrard M., Bishop A. R., “Dynamics and thermodynamics of a nonlinear model for DNA denaturation”, Phys. Rev. E, 47 (1993), 684 | DOI | MR

[31] Peyrard M., Using DNA to probe nonlinear localized excitations?, Europhys. Lett., 44 (1998), 271–277 | DOI

[32] Choi C. H., Kalosakas G., Rasmussen K. O., Hiromura M., Bishop A. R., Usheva A., “DNA dynamically directs its own transcription initiation”, Nucleic Acids Res., 32:4 (2004), 1584–1590 | DOI | MR

[33] Holstein T., “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 | DOI

[34] Holstein T., “Studies of polaron motion: Part II. The “small” polaron”, Annals of Phys., 8 (1959), 343–389 | DOI

[35] Shigaev A. S., Ponomarev O. A., Lakhno V. D., “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chemical Physics Letters, 513 (2011), 276–279 | DOI