Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 120-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The characteristic features of the fossil record of the planet Earth are an equilibrium state (stasis) of ecosystems during the Precambrian period (over 550 million years BC) and a periodicity of changes in species diversity during the past 500 million years. None explanation for this phenomena have not yet been found. In the paper the minimal logistic model of the biota development is presented, which predicts stasis for ecosystems that have predominantly asexual type of reproduction and cyclical development for ecosystems with sexual reproduction. According to results of theoretical studies presented in this paper, documented cases of global extinctions observed in the Earth's fossil record during the past 500 million years could be a reflection of the internal global properties of living systems. Such the properties are birth, death, and evolutionary selection processes of the organisms that are the best adapted ones to the environmental conditions.
@article{MBB_2017_12_1_a7,
     author = {V. A. Likhoshvai and S. I. Fadeev and T. M. Khlebodarova},
     title = {Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {120--136},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a7/}
}
TY  - JOUR
AU  - V. A. Likhoshvai
AU  - S. I. Fadeev
AU  - T. M. Khlebodarova
TI  - Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 120
EP  - 136
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a7/
LA  - ru
ID  - MBB_2017_12_1_a7
ER  - 
%0 Journal Article
%A V. A. Likhoshvai
%A S. I. Fadeev
%A T. M. Khlebodarova
%T Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 120-136
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a7/
%G ru
%F MBB_2017_12_1_a7
V. A. Likhoshvai; S. I. Fadeev; T. M. Khlebodarova. Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 120-136. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a7/

[1] Butterfield N. J., “Macroevolution and macroecology through deep time”, Palaeontology, 50:1 (2007), 41–55 | DOI | MR

[2] Raup D. M., Sepkoski J. J. Jr., “Mass extinctions in the marine fossil record”, Science, 215:4539 (1982), 1501–1503 | DOI

[3] MacLeod N., “The causes of Phanerozoic extinctions”, Evolution on Planet Earth, eds. Rothschild L., Lister A., Academic Press, London, 2003, 253–277 | DOI

[4] Huey R. B., Ward P. D., “Hypoxia, global warming, and terrestrial late Permian extinctions”, Science, 308:5720 (2005), 398–401 | DOI

[5] Peters S. E., “Environmental determinants of extinction selectivity in the fossil record”, Nature, 454:7204 (2008), 626–629 | DOI

[6] Wignall P. B., Sun Y., Bond D. P., Izon G., Newton R. J., Vedrine S., Widdowson M., Ali J. R., Lai X., Jiang H., Cope H., Bottrell S. H., “Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China”, Science, 324:5931 (2009), 1179–1182 | DOI

[7] Courtillot V., Fluteau F., “Cretaceous extinctions: the volcanic hypothesis”, Science, 328:5981 (2010), 973–974 | DOI

[8] Alvarez L. W., Alvarez W., Asaro F., Michel H. V., “Extraterrestrial cause for the cretaceous-tertiary extinction”, Science, 208:4448 (1980), 1095–1108 | DOI

[9] Alvarez L. W., Alvarez W., Asaro F., Michel H. V., “Asteroid extinction hypothesis”, Science, 211:4483 (1981), 654–656 | DOI

[10] Schulte P., Alegret L., Arenillas I., Arz J. A., Barton P. J., Bown P. R., Bralower T. J., Christeson G. L., Claeys P., Cockell C. S. et al., “The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary”, Science, 327:5970 (2010), 1214–1218 | DOI

[11] Archibald J. D., Clemens W. A., Padian K., Rowe T., Macleod N., Barrett P. M., Gale A., Holroyd P., Sues H. D., Arens N. C. et al., “Cretaceous extinctions: multiple causes”, Science, 328:5981 (2010), 973 | DOI

[12] Raup D. M., Sepkoski J. J., “Periodicity of extinctions in the geologic past”, Proc. Natl. Acad. Sci. USA, 81:3 (1984), 801–805 | DOI

[13] Raup D. M., Sepkoski J. J. Jr., “Periodic extinction of families and genera”, Science, 231 (1986), 833–836 | DOI

[14] Sepkoski J. J. Jr., “Extinctions of life”, Los Alamos Sci., 16 (1988), 36–49

[15] Sepkoski J. J. Jr., “Periodicity in extinction and the problem of catastrophism in the history of life”, J. Geol. Soc. London, 146 (1989), 7–19 | DOI

[16] Rohde R. A., Muller R. A., “Cycles in fossil diversity”, Nature, 434:7030 (2005), 208–210 | DOI

[17] Sznajd-Weron K., Weron R. L., “A new model of mass extinctions”, Physica A: Statistical Mechanics and its Applications, 293:3–4 (2001), 559–565 | DOI

[18] Guex J., Pilet S., Müntener O., Bartolini A., Spangenberg J., Schoene B., Sell B., Schaltegger U., “Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction”, Sci. Rep., 6 (2016), 23168 | DOI

[19] Markov A. V., “Dynamics of the marine faunal diversity in the phanerozoic: a new approach”, Paleontol. J., 35:1 (2001), 1–9

[20] Markov A. V., “Novyi podkhod v modelirovanii dinamiki raznoobraziya fanerozoiskoi morskoi bioty”, Zhurnal obschei biologii, 62:6 (2001), 460–471

[21] Markov A. V., Korotaev A. V., “Dinamika raznoobraziya fanerozoiskikh morskikh zhivotnykh sootvetstvuet modeli giperbolicheskogo rosta”, Zhurnal obschei biologii, 68:1 (2007), 3–18

[22] Dieckmann U., Law R., “The dynamical theory of coevolution: a derivation from stochastic ecological processes”, J. Math. Biol., 34:5–6 (1996), 579–612 | DOI | MR

[23] Marzoli A., Renne P. R., Piccirillo E. M., Ernesto M., Bellieni G., De Min A., “Extensive 200-million-year-Old continental flood basalts of the central atlantic magmatic province”, Science, 284:5414 (1999), 616–618 | DOI

[24] Finnegan S., Bergmann K., Eiler J. M., Jones D. S., Fike D. A., Eisenman I., Hughes N. C., Tripati A. K., Fischer W. W., “The magnitude and duration of Late Ordovician-Early Silurian glaciation”, Science, 331:6019 (2011), 903–906 | DOI

[25] Finnegan S., Heim N. A., Peters S. E., Fischer W. W., “Climate change and the selective signature of the Late Ordovician mass extinction”, Proc. Natl. Acad. Sci. USA, 109:18 (2012), 6829–6834 | DOI

[26] Keller G., Adatte T., Pardo A., Bajpai S., Khosla A., Samant B., “Cretaceous extinctions: evidence overlooked”, Science, 328:5981 (2010), 974–975 | DOI

[27] Olsen P. E., “Giant lava flows, mass extinctions, and mantle plumes”, Science, 284 (1999), 604–605 | DOI

[28] Hallam A., Wignall P. B., “Mass extinctions and sea-level changes”, Earth Sci. Rev., 48 (1999), 217–250 | DOI

[29] McElwain J. C., Beerling D. J., Woodward F. I., “Fossil plants and global warming at the Triassic-Jurassic boundary”, Science, 285 (1999), 1386–1390 | DOI

[30] Tanner L. H., Hubert J. F., Coffey B. P., McInerney D. P., “Stability of atmospheric CO$_2$ levels across the Triassic/Jurassic boundary”, Nature, 411:6838 (2001), 675–677 | DOI

[31] Beerling D., “CO$_2$ and the end-Triassic mass extinction”, Nature, 415:6870 (2002), 386–387 | DOI

[32] Petersen H. I., Lindström S., “Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary”, PLoS One, 7:10 (2012), e47236 | DOI

[33] Bacon K. L., Belcher C. M., Haworth M., McElwain J. C., “Increased atmospheric SO$_2$ detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland”, PLoS One, 8:4 (2013), e60614 | DOI

[34] Knoll A. H., Bambach R. K., Canfield D. E., Grotzinger J. P., “Comparative Earth history and Late Permian mass extinction”, Science, 273 (1996), 452–457 | DOI

[35] Shen Y., Farquhar J., Zhang H., Masterson A., Zhang T., Wing B. A., “Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction”, Nat. Commun., 2 (2011), 210 | DOI

[36] Song H., Wignall P. B., Chu D., Tong J., Sun Y., Song H., He W., Tian L., “Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath”, Sci. Rep., 4 (2014), 4132 | DOI

[37] Barnosky A. D., Matzke N., Tomiya S., Wogan G. O., Swartz B., Quental T. B., Marshall C., McGuire J. L., Lindsey E. L., Maguire K. C., Mersey B., Ferrer E. A., Has the Earth's sixth mass extinction already arrived?, Nature, 471:7336 (2011), 51–57 | DOI

[38] Ceballos G., Ehrlich P. R., Barnosky A. D., García A., Pringle R. M., Palmer T. M., “Accelerated modern human-induced species losses: Entering the sixth mass extinction”, Sci. Adv., 1:5 (2015), e1400253 | DOI