Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_1_a6, author = {Yu. P. Tolmacheva and A. V. Shmatkova and V. V. Kuzlyakina}, title = {Visualization and testing of motion bone fish jaw apparatus using a generalised structural module}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {73--82}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a6/} }
TY - JOUR AU - Yu. P. Tolmacheva AU - A. V. Shmatkova AU - V. V. Kuzlyakina TI - Visualization and testing of motion bone fish jaw apparatus using a generalised structural module JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 73 EP - 82 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a6/ LA - ru ID - MBB_2017_12_1_a6 ER -
%0 Journal Article %A Yu. P. Tolmacheva %A A. V. Shmatkova %A V. V. Kuzlyakina %T Visualization and testing of motion bone fish jaw apparatus using a generalised structural module %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 73-82 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a6/ %G ru %F MBB_2017_12_1_a6
Yu. P. Tolmacheva; A. V. Shmatkova; V. V. Kuzlyakina. Visualization and testing of motion bone fish jaw apparatus using a generalised structural module. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a6/
[1] Osse J. W., “Functional morphology of the head of the perch (Perca fluviatilis): An electromyographic study”, Neth. J. Zool., 10 (1969), 289–392
[2] Anker G. Ch., “Morphology and kinetics of the stickleback, Gasterosteus aculeatus”, Trans. Zool. Soc. (London), 32 (1974), 311–416 | DOI
[3] Liem K. F., “Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids”, J. Morph., 158 (1978), 323–360 | DOI
[4] Liem K. F., “Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes”, Amer. Zool., 20 (1980), 295–314 | DOI
[5] Lauder G. V., “Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia”, J. Morph., 163 (1980), 283–317 | DOI
[6] Lauder G. V., “Intraspecific functional repertoires in the feeding mechanism of the characoid fishes Lebiasina, Hoplias and Chalceus”, Copeia, 1981, 154–168 | DOI
[7] Westneat M. W., “Feeding mechanics of teleost fishes (Labridae: Perciformes): A test of four-bar linkage models”, J. Morph., 205 (1990), 269–295 | DOI
[8] Westneat M. W., “A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes”, J. Theoretical Biology, 223 (2003), 269–281 | DOI | MR
[9] Westneat M. W., “Evolution of levers and linkages in the feeding mechanisms of fishes”, Intergrative and Comparative Biology, 44 (2004), 378–389 | DOI
[10] Martin R. B., Burr N. A., Sharkey Skeletal tissue mechanics, Springer-Verlag, New York, 1998, 392 pp. | DOI
[11] Symanovskaya E. Y., Bolotova M. Ph., Nyashin Y. I., “Mechanical pressure as generator of grouth, development and formation of the dentofacial system”, Russian Journal of Biomechanics, 3 (2001), 3–11 | DOI
[12] Fagan M. J., Julian S., Siddall D. J., Mohsen A., “Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc — a material sensitivity study”, Proc IME, H: J. Eng. Med., 216 (2002), 299–314 | DOI
[13] Curtis N. K., Kupczik M. J., Fagan D., “Finite element modelling of the cat skull”, Journal of Morphology, 268 (2007), 1053
[14] Kupczik K., “Virtual biomechanics: basic concepts and technical aspects of finite element analysis in vertebrate morphology”, Journal of Anthropological Sciences, 86 (2008), 193–198
[15] Kupczik K., “Finite element analysis of craniofacial morphology in primates”, Bulletin der Schweizerischen Gesellschaft für Anthropologie, 14 (2009), 40–48
[16] Werneburg I., Hertwig St., “Head Morphology of the Ricefish, Oryzias latipes (Teleostei: Beloniformes)”, Journal of morphology, 270 (2009), 1095–1106 | DOI
[17] O'Higgins P., Fitton L., Phillips R., Shi J. F., Liu J., Groening F., Cobb S. N., Fagan M. J., “Virtual functional morphology: novel approaches to the study of craniofacial form and function”, Evolutionary Biology, 2009 | DOI
[18] Richmond B. G., Wright W., Grosse I., Dechow P. C., Ross C., Spencer M., Strait D., “Finite element analysis in functional morphology”, Anat. Rec., 283 (2005), 259–274 | DOI
[19] Tolmacheva Yu. P., Pachkov V. P., Pyhalov A. A., “Creation 3d Solid-State Model of The Maxillary Device of Fishes”, International journal of applied and fundamental research, 8 (2012), 14–16
[20] Tolmacheva Yu. P., Dolid E. A., Petukhov S. Yu., Pashkov V. P., Pykhalov A. A., “3D-modelirovanie i animatsiya vistseralnogo skeleta ryb: testirovanie sistemy chetyrekhzvennykh mekhanizmov”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 513–519 | DOI
[21] Dobben W. N., “Uber der Kiefermechanismus der Knochenfishe”, Archiv neerland. Zoolog., 50 (1935), 1–72
[22] Kuzlyakina V. V., Slepenko U. N., “Visualization of linkage diagrams by system Visual Structure Editor (VSE)”, Materials of IEEE International Conference on Information and Automation (June 20–23, Harbin, 2010), 7 pp.
[23] Kuzlyakina V. V. (nauchn. ruk.), Issledovanie i razrabotka integralnykh sistem avtomatizatsii proektirovaniya mashinnykh agregatov, Otchet o nauchno-issledovatelskoi rabote po teme 4/2/2007, MGU im G.I. Nevelskogo, MGU im G.I. Nevelskogo, Vladivostok, 2011, 100 pp.
[24] Zinovev V. A., Kurs teorii mekhanizmov i mashin, Nauka, M., 1972, 384 pp.
[25] Taliev D. N., Bychki-podkamenschiki Baikala, Izd-vo AN SSSR, L., 1955, 603 pp.
[26] Mikheev V. N., “Razmery potreblyaemykh zhertv i izbiratelnost pitaniya u molodi ryb”, Vopr. ikhtiologii, 24:2 (1984), 243–252
[27] Tolmacheva Yu. P., “Sravnitelnaya kharakteristika pitaniya trekh vidov baikalskikh Cottoidei v litorali Yuzhnogo Baikala (mys Berezovyi)”, Vopr. ikhtiologii, 48:4 (2008), 501–506 | DOI