The biological crystallography without crystals
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 55-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main obstacle to the determination of the atomic structure of a biological macromolecule by X-ray structural analysis is the need to obtain a crystal of the object under study. This need is due to the complexity of the experimental registration of scattering from a separate molecule. However, it is not always possible to get crystals of biological objects. The development of experimental techniques, in particular the emergence of the X-ray free-electron lasers, allows to approach the practical solution of the problem of registration of the scattering from an isolated particle and thereby to obtain information about the three-dimensional structure of non-crystalline biological objects by X-ray diffraction methods. Sampling of experimental scattering data makes the task of the structure determination of a single particle equivalent to the standard problem of biological crystallography, which allows to extend the biological crystallography techniques to the study of isolated biological particles (individual cells, organelles, molecular machines and, in the future, biological macromolecules). This article is devoted to the state of the art in this area, problems and solutions.
@article{MBB_2017_12_1_a5,
     author = {V. Y. Lunin and N. L. Lunina and T. E. Petrova},
     title = {The biological crystallography without crystals},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {55--72},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a5/}
}
TY  - JOUR
AU  - V. Y. Lunin
AU  - N. L. Lunina
AU  - T. E. Petrova
TI  - The biological crystallography without crystals
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 55
EP  - 72
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a5/
LA  - ru
ID  - MBB_2017_12_1_a5
ER  - 
%0 Journal Article
%A V. Y. Lunin
%A N. L. Lunina
%A T. E. Petrova
%T The biological crystallography without crystals
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 55-72
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a5/
%G ru
%F MBB_2017_12_1_a5
V. Y. Lunin; N. L. Lunina; T. E. Petrova. The biological crystallography without crystals. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a5/

[1] Thibault P., Elser V., Jacobsen C., Shapiro D., Sayre D., “Reconstruction of a yeast cell from X-ray diffraction data”, Acta Crystallographica Section A: Foundations of Crystallography, 62 (2006), 248–261 | DOI

[2] Rodriguez J. A., Xu R., Chen C. C., Huang Z., Jiang H., Chen A. L., Raines K. S., Pryor A. Jr, Nam D., Wiegart L., Song C., Madsen A., Chushkin Y., Zontone F., Bradley P. J., Miao J., “Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells”, IUCrJ, 2 (2015), 575–583 | DOI

[3] Takayama Y., Yonekura K., “Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy”, Acta Crystallographica Section A: Foundations and Advances, 72 (2016), 179–189 | DOI

[4] Munke A., Andreasson J., Aquila A., Awel S., Ayyer K., Barty A., Bean R. J., Berntsen P., Bielecki J., Boutet S. et al., “Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source”, Sci. Data, 3 (2016), 160064 | DOI

[5] Lunin V. Y., Grum-Grzhimailo A. N., Gryzlova E. V., Sinitsyn D. O., Petrova T. E., Lunina N. L., Balabaev N. K., Tereshkina K. B., Stepanov A. S., Krupyanskii Y. F., “Efficient calculation of diffracted intensities in the case of non-stationary scattering by biological macromolecules under XFEL pulse”, Acta Crystallographica, Section D: Biological Crystallography, 71 (2015), 293–303 | DOI

[6] Sinitsyn D. O., Lunin V. Yu., Grum-Grzhimailo A. N., Gryzlova E. V., Balabaev N. K., Lunina N. L., Petrova T. E., Tereshkina K. B., Abdulnasyrov E. G., Stepanov A. S., Krupyanskii Yu. F., “Novye vozmozhnosti rentgenovskoi nanokristallografii biologicheskikh makromolekul s ispolzovaniem rentgenovskikh lazerov na svobodnykh elektronakh”, Khimicheskaya fizika, 33:7 (2014), 21–28 | DOI

[7] Bricogne G., “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica Section A: Foundations of Crystallography, 30 (1974), 349–405

[8] Bricogne G., “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica Section A: Foundations of Crystallography, 32 (1976), 832–847 | DOI

[9] Lunin V. Y., Urzhumtsev A. G., Podjarny A., “Ab initio phasing of low-resolution Fourier syntheses”, International Tables for Crystallography, F, Second Edition, eds. Arnold E., Himmel D. M., Rossmann M. G., John Wiley and Sons, Chichester, 2012, 437–442 | DOI

[10] Lunin V. Y., Lunina N. L., Urzhumtsev A. G., “Ab initio low resolution phasing”, Advancing methods for biomolecular crystallography, eds. Read R., Urzhumtsev A. G., Lunin V. Y., Springer, 2013, 181–192 | DOI

[11] Zhang K. Y. J., Cowtan K. D., Main P., “Phase improvement by iterative density modification”, International Tables for Crystallography, F, eds. Arnold E., Himmel D. M., Rossmann M. G., John Wiley and Sons, Chichester, 2012, 385–400 | DOI

[12] Fienup J. R., “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 | DOI

[13] Abrahams J. P., “Bias reduction in phase refinement by modified interference functions: introducing the $\gamma$ correction”, Acta Crystallographica Section D: Biological Crystallography, 53 (1997), 371–376 | DOI

[14] Oslänyi G., Sütő A., “Ab initio structure solution by charge flipping”, Acta Crystallographica Section A: Foundations of Crystallography, 60 (2004), 134–141 | DOI

[15] Marchesini S., “A unified evaluation of iterative projection algorithms for phase retrieval”, Rev. Sci. Instrum., 78 (2007), 011301 | DOI

[16] Millane R., Lo V. L., “Iterative projection algorithms in protein crystallography. I. Theory”, Acta Crystallographica Section A: Foundations of Crystallography, 69 (2013), 517–527 | DOI | MR

[17] Urzhumtsev A. G., Ispolzovanie lokalnogo usredneniya pri analize izobrazhenii makromolekul na kartakh raspredeleniya elektronnoi plotnosti, Preprint, NTsBI, Puschino, 1985

[18] Wang B. C., “Resolution of phase ambiguity in macromolecular crystallography”, Methods in Enzymology, 115 (1985), 90–112 | DOI

[19] Urzhumtsev A. G., Lunin V. Y., Luzyanina T. B., “Bounding a Molecule in a Noisy Synthesis”, Acta Crystallographica Section A: Foundations of Crystallography, 45 (1989), 34–39 | DOI

[20] Marchesini S., He H., Chapman H. N., Hau-Riege S. P., Noy A., Howells M. R., Weierstall U., Spence J. H. C., “X-ray image reconstruction from a diffraction pattern alone”, Phis. Rev. B, 68 (2003), 140101(R) | DOI

[21] Rodriguez J. A., Xu R., Chen C.-C., Zou Y., Miao J., “Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities”, J. Applied Crystallography, 46 (2013), 312–318 | DOI

[22] Ekeberg T., Svenda M., Abergel C., Maia F. R. N. C., Seltzer V., Claverie J. M., Hantke M., Jönsson O., Nettelblad C., van der Schot G. et al., “Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser”, Phys. Rev. Lett., 114 (2015), 098102 | DOI

[23] Loh N.-T. D., Elser V., “Reconstruction algorithm for single-particle diffraction imaging experiments”, Phys. Rev. E, 80 (2009), 026705 | DOI

[24] Maia F. R. N. C., Ekeberg T., Spoel D., Hajdu J., “Hawk: the image reconstruction package for coherent X-ray diffractive imaging”, J. Applied Crystallography, 43 (2010), 1535–1539 | DOI

[25] Lunin V. Yu., Lunina N. L., Petrova T. E., “Ispolzovanie svyaznykh masok v zadache vosstanovleniya izobrazheniya izolirovannoi chastitsy po dannym rentgenovskogo rasseyaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 543–562 | DOI

[26] Lunina N. L., Petrova T. E., Urzhumtsev A. G., Lunin V. Yu., “Ispolzovanie svyaznykh masok v zadache vosstanovleniya izobrazheniya izolirovannoi chastitsy po dannym rentgenovskogo rasseyaniya. II. Zavisimost tochnosti resheniya ot shaga diskretizatsii eksperimentalnykh dannykh”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 508–525 | DOI

[27] Lunin V. Y., Lunina N. L., Petrova T. E., Baumstark M. W., Urzhumtsev A. G., “Mask-based approach to phasing of single-particle diffraction data”, Acta Crystallographica Section D: Structural Biology, 72 (2016), 147–157 | DOI

[28] Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauß N., “Three-dimensional structure of cyanobacterial photosystem I at 2.5AÊ resolution”, Nature, 411 (2001), 909–917 | DOI

[29] Broser M., Gabdulkhakov A., Kern J., Guskov A., Müh F., Saenger W., Zouni A., “Crystal structure of monomeric Photosystem II from Thermosynechococcus elongatus at 3.6 Åresolution”, J. Biol. Chem., 285 (2010), 26255–26262 | DOI