Trajectories of the DNA kinks in the sequences containing CDS regions
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Coding regions (CDS) being an integral part of any gene sequence, play an important role in the process of transcription. One of the tasks associated with the CDS regions, consists in the modeling of the passage of transcription bubbles named also open states or DNA kinks through the coding regions. In this paper, we present a simple and convenient approach to the modeling of the passage. It includes the calculation of the energy profile of the sequence and reducing the initial task to the modeling of the movement of a quasi particle in the field with this energy profile. To illustrate the method, we present the results of the calculations of the trajectories of the DNA kinks moving in the sequence of gene coding interferon alpha 17 (IFNA17) that consists of the three regions: the coding region and the two regions with unknown functional properties. To analyze the kink dynamics, we apply approximation where the DNA parameters are being averaged separately over each of the three regions. In the absences of dissipation, the total kink energy is constant. At the same time the kink velocity is constant only inside each of the regions. In the presence of dissipation, the total kink energy decreases. It is shown that the greater the total initial energy of the kink, the faster the energy decrease. It is suggested that the proposed approach could be useful in finding the ways to govern the movement of transcription bubbles at the first stage of the process of transcription.
@article{MBB_2017_12_1_a4,
     author = {L. V. Yakushevich and L. A. Krasnobaeva},
     title = {Trajectories of the {DNA} kinks in the sequences containing {CDS} regions},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a4/}
}
TY  - JOUR
AU  - L. V. Yakushevich
AU  - L. A. Krasnobaeva
TI  - Trajectories of the DNA kinks in the sequences containing CDS regions
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 1
EP  - 13
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a4/
LA  - en
ID  - MBB_2017_12_1_a4
ER  - 
%0 Journal Article
%A L. V. Yakushevich
%A L. A. Krasnobaeva
%T Trajectories of the DNA kinks in the sequences containing CDS regions
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 1-13
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a4/
%G en
%F MBB_2017_12_1_a4
L. V. Yakushevich; L. A. Krasnobaeva. Trajectories of the DNA kinks in the sequences containing CDS regions. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a4/

[1] Dubois A., Francois C., Descamps V., Fournier C., Wychowski C., Dubuisson J., Castelain S., Duverlie G., “Enhanced anti-HCV activity of interferon alpha 17 subtype”, Virology, 6 (2009), 70 | DOI

[2] Bychkov V. A., Ryazantseva N. V., Novitsky V. V., “Analysis of the combined effect of polymorphisms interferon genes OAS1, OAS3, PKR, IFNA17 and IFNG in susceptibility to chronic viral hepatitis C”, Bulletin of Siberian medicine, 3 (2011), 19–23

[3] GenBank: Homo sapiens interferon alpha 17 (IFNA17), mRNA, (accessed December 23, 2016) http://www.ncbi.nlm.nih.gov/nuccore/NM_021268.2

[4] Englander S. W., Kallenbach N. R., Heeger A. J., Krumhansl J. A., Litwin A., “Nature of the open state in DNA structure”, Proc. Natl. Acad. Sci. USA, 77 (1980), 7222–7226 | DOI

[5] Shigaev A. S., Ponomarev O. A., Lakhno V. D., “Theoretical and Experimental Investigations of DNA Open States”, Mathematical biology and bioinformatics, 8 (2013), 553–664 | DOI

[6] Scott A., Encyclopedia of Nonlinear Science, Frances and Taylor, New York, 2005 | MR

[7] Ohyama T., DNA Conformation and Transcription, Springer-Science Business Media, New York, 2005

[8] Ivancevic V. G., Ivancevic T. T., Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures, 2013, arXiv: 1305.0613v1 [q-bio.OT] | MR

[9] Sanchez D. S., Qu H., Bulla D., Zocchi G., “DNA kinks and bubbles: temperature dependence of the elastic energy of sharply bent 10-nm-size DNA molecules”, Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 87:2 (2013), 022710 | DOI

[10] Peyrard M., Bishop A. R., “Statistical Mechanics of a Nonlinear Model for DNA Denaturation”, Phys. Rev. Lett., 62 (1989), 2755–2758 | DOI

[11] Yomosa S., “Solitary excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A, 30 (1984), 474–480 | DOI | MR

[12] Takeno S., Homma S. A., “Coupled Base-Rotator Model for Structure and Dynamics of DNA”, Prog. Theor. Phys., 72 (1984), 679–693 | DOI | MR

[13] Yakushevich L. V., “Nonlinear DNA dynamics: a new model”, Phys. Letters A, 136 (1989), 413–417 | DOI

[14] Barbi M., Cocco S., Peyrard M., “Helicoidal model for DNA opening”, Phys. Letters A, 253 (1999), 358–369 | DOI

[15] Yakushevich L. V., Nonlinear Physics of DNA, Wiley-Verlag, New York, 2004, 190 pp.

[16] Vasumathi V., Daniel M., “Base-pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium”, Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 80 (2009), 061904 | DOI

[17] Daniel M., Vanitha M., “Bubble solitons in an inhomogeneous, helical DNA molecular chain with flexible strands”, Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 84 (2011), 031928 | DOI

[18] Di Garbo A., “Longitudinal displacements of base pairs in DNA and effects on the dynamics of nonlinear excitations”, Math. Biosci., 245 (2013), 70–75 | DOI | MR

[19] Di Garbo A., “Anharmonic longitudinal motion of bases and dynamics of nonlinear excitation in DNA”, Biophys. Chem., 208 (2016), 76–83 | DOI

[20] Shapovalov A. V., Krasnobaeva L. A., The solitons of the sine-Gordon, Tomsk State University, Tomsk, 2009

[21] Krasnobaeva L. A., Yakushevich L. V., “Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17)”, Journal of Bioinformatics and Computational Biology, 13 (2015), 1540002 | DOI

[22] Yakushevich L. V., Krasnobaeva L. A., Shapovalov A. V., Quintero N. R., “One- and Two-Soliton Solutions of the Sine-Gordon Equation as Applied to DNA”, Biophysics, 50 (2005), 450–455

[23] Yakushevich L. V., Krasnobaeva L. A., “Forced Oscillations of DNA bases”, Biophysics, 61 (2016), 286–296 | DOI

[24] McLaughlin D. W., Scott A. C., “Perturbation analysis of fluxion dynamics”, Phys. Rev. A, 18 (1978), 1652 | DOI

[25] Yakushevich L. V., Krasnobaeva L. A., “Effects of dissipation and external fields on the dynamics of conformational distortions in DNA”, Biophysics, 52 (2007), 237–243 | DOI

[26] Yakushevich L. V., Krasnobaeva L. A., “Peculiar Features of Kink Dynamics in Inhomogeneous DNA”, Biophysics, 53 (2008), 36–41 | DOI | MR

[27] Yakushevich L. V., Krasnobaeva L. A., “A new approach to studies of non-linear dynamics of kinks activated in inhomogeneous polynucleotide chains”, Int. J. Nonlin. Mech., 43 (2008), 1074–1081 | DOI