False discovery rate of classification as a function of periodicity strength of time-course gene expression
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 198-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classification of genes provides valuable information about similar types of gene expressions. The periodic structure of time-course gene expression is a reliable characterization to classify two genes with the same periodic pattern in the same class. The strength of periodicity may differ from one gene to another. In this article, using Lomb-Scargle and JTK methods, three types of cyclic time-course patterns of genes are introduced according to periodicity strength. We proposed that the periodicity is an important factor for gene discrimination according to time-course expression profile. Based on the Saccharomyces cerevisiae data set, genes with different periodicity were discriminated, according to both the amounts of phase shift and time-course expression. Then, false discovery rates were computed under all circumstances. As a result, the false discovery rate increased when the strength of periodicity decreased. The false discovery rate of genes with strong periodic structure was 20% whereas it was 45% for weak periodic ones. The data set comprised 79% of genes with a weak periodicity, that deviated the result of discrimination.
@article{MBB_2017_12_1_a3,
     author = {Farzad Najafi Amiri and Mahnaz Khalafi and Masoud Golalipour and Majid Azimmohseni},
     title = {False discovery rate of classification as a function of periodicity strength of time-course gene expression},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {198--203},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/}
}
TY  - JOUR
AU  - Farzad Najafi Amiri
AU  - Mahnaz Khalafi
AU  - Masoud Golalipour
AU  - Majid Azimmohseni
TI  - False discovery rate of classification as a function of periodicity strength of time-course gene expression
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 198
EP  - 203
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/
LA  - en
ID  - MBB_2017_12_1_a3
ER  - 
%0 Journal Article
%A Farzad Najafi Amiri
%A Mahnaz Khalafi
%A Masoud Golalipour
%A Majid Azimmohseni
%T False discovery rate of classification as a function of periodicity strength of time-course gene expression
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 198-203
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/
%G en
%F MBB_2017_12_1_a3
Farzad Najafi Amiri; Mahnaz Khalafi; Masoud Golalipour; Majid Azimmohseni. False discovery rate of classification as a function of periodicity strength of time-course gene expression. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 198-203. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/

[1] Fokianosa K., Promponas V. J., “Biological applications of time series frequency domain clustering”, Journal of Time series Analysis, 33:5 (2012), 744 | DOI | MR

[2] Gonze D., Pinloche S., Gascuel O., Van Helden J., “Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs”, Bioinformatics, 2005 | DOI

[3] Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B., “Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization”, Molecular Biology of the Cell, 1998, 3273 | DOI

[4] Eisen M. B., Spellman P. T., Brown P. O., Botstein D., “Cluster analysis and display of genomewide expression patterns”, Proceedings of the National Academy of Sciences, 95 (1998), 14863–14868 | DOI

[5] Glynn E. F., Chen J., Mushegian A. R., “Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms”, Bioinformatics, 22 (2006), 310 | DOI

[6] Zhao W., Serpedin E., Dougherty E. R., “Spectral preprocessing for clustering time-series gene expressions”, EURASIP Journal on Bioinformatics and Systems Biology, 2009 | DOI

[7] Nugent R., Meila M., “An overview of clustering applied to molecular biology”, Methods in Molecular Biology, 2010, 369 | DOI

[8] Wichert S., Fokianos K., Strimmer K., “Identifying periodically expressed transcripts in microarray time series data”, Bioinformatics, 2004, 5 | DOI

[9] Zhao L. P., Prentice R., Breeden L., “Statistical modeling of large microarray data sets to identify stimulus response profiles”, Proc. Natl Acad. Sci. USA, 98:10 (2001), 5631–5636 | DOI

[10] Ahdesmaki M., Lahdesmaki H., Pearson R., Huttunen H., Yli-Harja O., “Robust detection of periodic time series measured from biological systems”, BMC Bioinformatics, 6 (2005), 117 | DOI

[11] Hughes M. E., Hogenesch J. B., Kornacker K., “JTK-CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets”, Journal of biological rhythms, 2010, 372 | DOI

[12] Scargle J. D., “Statistical aspects of spectral analysis of unevenly spaced data”, Astrophys. J., 1982, 835 | DOI