Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_1_a3, author = {Farzad Najafi Amiri and Mahnaz Khalafi and Masoud Golalipour and Majid Azimmohseni}, title = {False discovery rate of classification as a function of periodicity strength of time-course gene expression}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {198--203}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/} }
TY - JOUR AU - Farzad Najafi Amiri AU - Mahnaz Khalafi AU - Masoud Golalipour AU - Majid Azimmohseni TI - False discovery rate of classification as a function of periodicity strength of time-course gene expression JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 198 EP - 203 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/ LA - en ID - MBB_2017_12_1_a3 ER -
%0 Journal Article %A Farzad Najafi Amiri %A Mahnaz Khalafi %A Masoud Golalipour %A Majid Azimmohseni %T False discovery rate of classification as a function of periodicity strength of time-course gene expression %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 198-203 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/ %G en %F MBB_2017_12_1_a3
Farzad Najafi Amiri; Mahnaz Khalafi; Masoud Golalipour; Majid Azimmohseni. False discovery rate of classification as a function of periodicity strength of time-course gene expression. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 198-203. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a3/
[1] Fokianosa K., Promponas V. J., “Biological applications of time series frequency domain clustering”, Journal of Time series Analysis, 33:5 (2012), 744 | DOI | MR
[2] Gonze D., Pinloche S., Gascuel O., Van Helden J., “Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs”, Bioinformatics, 2005 | DOI
[3] Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B., “Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization”, Molecular Biology of the Cell, 1998, 3273 | DOI
[4] Eisen M. B., Spellman P. T., Brown P. O., Botstein D., “Cluster analysis and display of genomewide expression patterns”, Proceedings of the National Academy of Sciences, 95 (1998), 14863–14868 | DOI
[5] Glynn E. F., Chen J., Mushegian A. R., “Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms”, Bioinformatics, 22 (2006), 310 | DOI
[6] Zhao W., Serpedin E., Dougherty E. R., “Spectral preprocessing for clustering time-series gene expressions”, EURASIP Journal on Bioinformatics and Systems Biology, 2009 | DOI
[7] Nugent R., Meila M., “An overview of clustering applied to molecular biology”, Methods in Molecular Biology, 2010, 369 | DOI
[8] Wichert S., Fokianos K., Strimmer K., “Identifying periodically expressed transcripts in microarray time series data”, Bioinformatics, 2004, 5 | DOI
[9] Zhao L. P., Prentice R., Breeden L., “Statistical modeling of large microarray data sets to identify stimulus response profiles”, Proc. Natl Acad. Sci. USA, 98:10 (2001), 5631–5636 | DOI
[10] Ahdesmaki M., Lahdesmaki H., Pearson R., Huttunen H., Yli-Harja O., “Robust detection of periodic time series measured from biological systems”, BMC Bioinformatics, 6 (2005), 117 | DOI
[11] Hughes M. E., Hogenesch J. B., Kornacker K., “JTK-CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets”, Journal of biological rhythms, 2010, 372 | DOI
[12] Scargle J. D., “Statistical aspects of spectral analysis of unevenly spaced data”, Astrophys. J., 1982, 835 | DOI