Computational studies of the hydroxyapatite nanostructures, peculiarities and properties
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 14-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this review paper the main approaches to modeling the hydroxyapatite (HAP) structures and first-principle calculations of their properties, pure and with various defects, are considered. First, the HAP nano-particles (NPs) and clusters peculiarities are described using different methods: molecular mechanical and quantum mechanical, especially semi-empirical such as PM3. Both approximations used here, namely, restricted Hartee-Fock (RHF) and unrestricted Hartee-Fock (UHF), are considered. The influence of the protons (hydrogens), contained in the surrounding medium (pH), on the formation of HAP nanoparticles of various sizes and shapes is considered and discussed. Second, the HAP crystal unit cells studies are considered on the basis of a density functional theory (DFT) modelling. The main peculiarities of both phases (hexagonal and monoclinic) are considered too, including their ordered and disordered substructures. One of the important aspects of the computer modeling of HAP is to build the models and consider various structural modifications of HAP (such as, vacancies of oxygen atoms and hydroxyl OH group, hydrogen interstitials and different substitutions of atoms in HAP unit cell), which allow explicitly creating and exploring the changes in the charges of HAP and the electrical potential on the HAP surface. HAP modifications are most close to biological HAP and therefore are necessary for implant medical applications and can create and functionalize HAP surface with most adhesive properties for living cells (osteoblasts, osteoclatst). This improves the HAP implant quality. Besides, it has recently been established that oxygen vacancy in HAP influences their photo-catalytic properties. It is important for HAP usage as in environmental remediation and for bacteria inactivation. Therefore it is very important to create and investigate the oxygen vacancy models in HAP, and others defects models. In this work we review a DFT modelling and studies of HAP, both pure perfect bulk and imperfect bulk cases. Special HAP modelling approaches are used for layered slab super-cells units, which include vacuum spaces between the layered slabs forming HAP surface. To all these computer studies the first principle calculations were applied. In this review various DFT approximations are analysed for bulk and surface modified HAP. These approximations are carried out using both the local basis (local density approximation – LDA, in AIMPRO codes) and the plane-waves (generalized gradient approximation – GGA, in VASP codes). Data of all structures and models of HAP defects investigated are widely analyzed.
@article{MBB_2017_12_1_a13,
     author = {V. S. Bystrov},
     title = {Computational studies of the hydroxyapatite nanostructures, peculiarities and properties},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {14--54},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a13/}
}
TY  - JOUR
AU  - V. S. Bystrov
TI  - Computational studies of the hydroxyapatite nanostructures, peculiarities and properties
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 14
EP  - 54
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a13/
LA  - en
ID  - MBB_2017_12_1_a13
ER  - 
%0 Journal Article
%A V. S. Bystrov
%T Computational studies of the hydroxyapatite nanostructures, peculiarities and properties
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 14-54
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a13/
%G en
%F MBB_2017_12_1_a13
V. S. Bystrov. Computational studies of the hydroxyapatite nanostructures, peculiarities and properties. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 14-54. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a13/

[1] Kay M. I., Young R. A., Posner A. S., “Crystal Structure of Hydroxyapatite”, Nature (London), 204 (1964), 1050 | DOI

[2] Elliot J. C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, 1994

[3] Rather B. D. (ed.), Biomaterial Science, Academic Press, London, 1996

[4] Hughes J. M., Cameron M., Crowley K. D., “Structural variations in natural F, OH, and Cl apatites”, American Mineralogist, 74 (1989), 870–876 (accessed: 21.12.2016) http://rruff.geo.arizona.edu/AMS/result.php

[5] Elliot J. C., Mackie P. E., Young R. A., “Monoclinic hydroxyapatite”, Science, 180:4090 (1973), 1055–1057 | DOI

[6] Young R. A., “Dependence of apatite properties on crystal structural details”, Trans. N.Y. Acad. Sci., 1967, no. 7, 949–959 | DOI

[7] Ikoma T., Yamazaki A., “Preparation and Structure of Refinement of Monoclinic Hydroxyapatite”, J. Solid State Chem., 144 (1999), 272–276 | DOI

[8] Ma G., Liu X. Y., Hydroxyapatite: Hexagonal or Monoclinic?, Crystal Growth Design, 9:7 (2009), 2991–2994 | DOI | MR

[9] Calderin L., Stott M. J., Rubio A., “Electronic and crystallographic structure of apatites”, Phys. Rev. B, 67 (2003), 134–106 | DOI

[10] Tofail S. A. M., Haverty D., Stanton K. T., Mcmonagle J. B., “Structural Order and Dielectric Behaviour of Hydroxyapatite”, Ferroelectrics, 319 (2005), 117–123 | DOI

[11] Hitmi N., LaCabanne C., Young R. A., “OH$^-$ dipole reorientability in hydroxyapatites: effect of tunnel size”, J. Phys. Chem. Solids, 47:6 (1986), 533–546 | DOI

[12] Nakamura S., Takeda H., Yamashita K., “Proton transport polarization and depolarization of hydroxyapatite ceramics”, J. Appl. Phys., 89:10 (2001), 5386–5392 | DOI

[13] Bystrov V. S., Paramonova E. V., Bystrova N. K., Sapronova A. V., “Hydroxyapatite polarization properties”, Scientific Proceedings of Riga Technical University: Material Sciences and Applied Chemistry, 17:1 (2008), 30–37

[14] Bystrov V. S., Bystrova N. K., Paramonova E. V., Dekhtyar Yu. D., “Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties”, Mathematical biology and Bioinformatics, 4:2 (2009), 7–11 | DOI

[15] RERCERAMICS: Multifunctional percolated nanostructured ceramics fabricated from hydroxyapatite, NMP3-CT-2003-504937 FP6 project, Riga Technical University, 2007 (accessed 21.12.2016) http://cordis.europa.eu/publication/rcn/12743_en.html

[16] Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V., “Application of calcium phosphate nanoparticles in biomedicine”, Journal of Materials Chemistry, 20:1 (2010), 18–23 | DOI | MR

[17] Dorozhkin S. V., “Nanosized and nanocrystalline calcium orthophosphates”, Acta Biomaterialia, 6 (2010), 715–734 | DOI

[18] Leon B., Janson J. A., Thin Calcium Phosphate Coatings for Medical Implants, Springer, 2009

[19] de Leeuw N. H., “Computer simulations of structures and properties of the biomaterial hydroxyapatite”, J. Mater. Chem., 20 (2010), 5376–5389 | DOI

[20] Haverty D., Tofail S. A. M., Stanton K. T., McMonagle J. B., “Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis”, Phys. Rev. B, 71 (2005), 094103 | DOI

[21] Mostafa N. Y., Brown P. W., “Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions”, J. Physics and Chemistry of Solids, 68:3 (2007), 431–437 | DOI

[22] Slepko A., Demkov A. A., “First-principles study of the biomineral hydroxyapatite”, Phys. Rev. B, 84 (2011), 134–108 | DOI

[23] Slepko A., Demkov A. A., “First-principles study of hydroxyapatite surface”, J. Chem. Phys., 139 (2013), 044714 | DOI

[24] Astala R., Stott M. J., “First-principles study of hydroxyapatite surfaces and water adsorption”, Phys. Rev. B, 78 (2008), 075427 | DOI

[25] Rulis P., Ouyang L., Ching W. Y., “Electronic structure and bonding in calcium apatite crystals: hydroxyapatite, fluoapatite, chlorapatite and bromapatite”, Phys. Rev. B, 70 (2004), 155–104

[26] Rulis P., Yao H., Ouyang L., Ching W. Y., “Electronic structure, bonding, charge distribution, and x-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles”, Phys. Rev. B, 76 (2007), 245–410 | DOI

[27] Matsunaga K., Kuwabara A., “First-principles study of vacancy formation in hydroxyapatite”, Phys. Rev. B, 75 (2007), 014102 | DOI

[28] Bystrov V., Paramonova E., Bystrova N., Sapronova A., Filippov S., “Computational molecular nanostructures and mechanical/adhesion properties of Hydroxyapatite”, Micro- and Nanostructures of Biological Systems, ed. G. Bischoff, Shaker Verlag, Aachen; Martin Luther University Halle-Wittenberg, 2005, 77–93

[29] Bystrov V., Bystrova N., Paramonova E., Sapronova A., Filippov S., “Modeling and computation of Hydroxyapatite nanostructures and properties”, Advanced materials forum III, Mater. Science Forum, 514–516, no. 1–2, 2006, 1434–1437 | DOI

[30] Bystrov V. S., Paramonova E., Dekhtyar Y., Katashev A., Karlov A., Polyaka N., Bystrova A. V., Patmalnieks A., Kholkin A. L., “Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles”, J. Phys.: Cond. Matter, 23 (2011), 065302 | DOI

[31] Bystrov V., Costa E., Santos S., Almeida M., Kholkin A., Kopyl S., Dekhtyar Yu., Bystrova A. V., Paramonova E. V., “Computational Study of Hydroxyapatite Properties and Surface Interactions”, IEEE Conf. Publications, 2012, 1–3 | DOI

[32] Bystrov V. S., Paramonova E. V., Costa M. E. V., Santos C., Almeida M., Kopyl S., Dekhtyar Yu., Bystrova A. V., Maevsky E. I., Pullar R. C., Kholkin A. L., “Computational Study of the Properties and Surface Interactions of Hydroxyapatite”, Ferroelectrics, 449:1 (2013), 94–101 | DOI | MR

[33] Bystrova A. V., Dekhtyar Yu. D., Popov A. I., Bystrov V. S., “Modeling and synchrotron data analysis of modified Hydroxyapatite structure”, Mathematical Biology and Bioinformatics, 9:1 (2014), 171–182 | DOI

[34] Bystrova A. V., Dekhtyar Yu. D., Popov A. I., Coutinho J., Bystrov V. S., “Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure”, Ferroelectrics, 475:1 (2015), 135–147 | DOI

[35] Bystrov V. S., Coutinho J., Bystrova A. V., Dekhtyar Yu. D., Pullar R. C., Poronin A., Palcevskis E., Dindune A., Alkan B., Durucan C., Paramonova E. V., “Computational study of the hydroxyapatite structures, properties and defects”, J. Phys. D: Appl. Phys., 48 (2015), 195–302 | DOI

[36] Dekhtyar Yu., Khlusov I., Polyaka N., Sammons R., Tyulkin F., “Influence of Bioimplant Surface Electrical potential on osteoblast Behaviour and Bone Tissue Formation”, 12th Mediterranean Conference on Medical and Biological Engineering and Computing, IFMBE Proc., 29, eds. Bamidis P. D., Pllikarakis N., MEDICON, Munich, 2010, 800–803 | DOI

[37] Dekhtyar Yu., Polyaka N., Sammons R., “Electrically Charged Hydroxyapatite Enhances Immobilization and Proliferation of Osteoblasts”, IFMBE Proceedings, 20, eds. Katashev A., Dekhtyar Yu., Spigulis J., Springer-Verlag, Berlin–Heidelberg, 2008, 23–25 | DOI

[38] Dekhtyar Yu., Bystrov V., Bystrova A., Dindune A., Katashev A., Khlusov I., Palcevskis E., Paramonova E., Polyaka N. N., Romanova M., Sammons R., Veljovic D., “Engineering of the Hydroxyapatite Cell Adhesion Capacity”, International Symposium on Biomedical Engineering and Medical Physics (10–12 October 2012, Latvia, Riga), IFMBE Proceedings, 38, ed. Dekhtyar Yu., Springer, Heidelberg, 2013, 182–185 | DOI

[39] Dehtjars J., Dvornichenko M., Karlov A., Khlusov I., Polaka N., Sammons R., Zajcevs K., “Electrically Functionalized Hydroxyapatite and Calcium Phospate Surfaces to Enhance Immobilization and Proliferation of Osateoblasts In Vitro and Modulate Osteogenesis In Vivo”, World Congress on Medical Physics and Biomedical Engineering (Germany, Munich. 2009), IFMBE Proceedings, 25/10, eds. Dossel O., Schlegel W. C., Springer, Berlin, 2010, 245–248 | DOI

[40] Dekhtyar Yu., Bystrov V., Khlusov I., Polyaka N., Sammons R., Tyulkin F., “Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue”, Society For Biomaterials Annual Meeting, Book of abstracts (11–16 April, 2011, Orlando, Florida, USA), 519

[41] Onuma K., “Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms”, Progress in Crystal Growth and Characterization of Materials, 52 (2006), 223–245 | DOI

[42] Yin X., Scott M. J., “Biological calcium phosphates and Posner's cluster”, J. Chem. Phys., 118:8 (2003), 3717–3723 | DOI

[43] Bystrov V. S., “Piezoelectricity in the Ordered Monoclinic Hydroxyapatite”, Ferroelectrics, 475:1 (2015), 148–153 | DOI | MR

[44] Menendez-Proupin E., Cervantes-Rodriguez S., Osorio-Pulgar R., Franco-Cisterna M., Camacho-Montes H., Fuentes M. E., “Computer simulation of the elastic constants of hydroxyapatite and fluorapatite”, J. Mechanical Behavior of Biomedical Materials, 4 (2011), 1011–1020 | DOI

[45] Martins M., Santos C., Almeida M., Costa E., “Hydroxyapatite micro- and nanoparticles: Nucleation and growth mechanisms in the presence of citrate species”, J. Colloid and Interface Science, 2008, 210–216 | DOI

[46] Ye F., Guo H., Zhang H., “Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants”, Nanothechnology, 19:24 (2008), 245606 | DOI

[47] Aronov D., Chaikina M., Haddad J., Karlov A., Mezinskis G., Oster L., Pavlovska I., Rosenman G., “Electronic states spectroscopy of Hydroxyapatite ceramics”, J. Mater. Sci: Mater. Med., 18 (2007), 865–870 | DOI

[48] Bystrov V., Bystrova N., Dekhtyar Yu., “Size depended electrical properties of Hydroxyapatite nanoparticles”, IFMBE Proceedings 25/VIII. WC 2009, eds. O. Dossel, W. C. Schlegel, Springer, Berlin, 2009, 230–232

[49] Bystrov V. S., Dekhtyar Yu., Paramonova E., Pullar R., Katashev A., Polyaka N., Bystrova A. V., Sapronova A., Fridkin V., Kliem H., Kholkin A. L., “Polarization of PVDF and P(VDF-TrFE) thin films revealed by emission spectroscopy with computational simulation during phase transition”, J. Appl. Phys., 111 (2012), 104113 | DOI

[50] Lang S. B., Tofail S. A. M., Gandhi A. A., Gregor M., Wolf-Brandstetter C., Kost J., Bauer S., Krause M., “Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon”, Appl. Phys. Lett., 98 (2011), 123703 | DOI

[51] Lang S. B., Tofail S. A. M., Kholkin A., Wojtas M., Gregor M., Gandhi A., Wang Y., Bauer S., Krause M., Plecenik A., “Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon”, Sci. Rep., 3 (2013), 2215 | DOI

[52] AIMPRO Home Page, (accessed 11.12.2016) http://aimpro.ncl.ac.uk/

[53] Britney P. R., Jones R., “LDA Calculations Using a Basis of Gaussian Orbitals”, Phys. Status Solidi B: Basic Res., 217 (2000), 131–171 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[54] Briddon P. R., Rayson M. J., “Accurate Kohn-Sham DFT with the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modeling”, Phys. Status Solidi B, 248:6 (2011), 1309–1318 | DOI

[55] HyperChem. Tools for Molecular Modeling (release 7, 8). Professional edition, , Hypercube, Inc., Gainesville, 2002 (accessed 28.12.2016) http://www.hyper.com/?TabId=385

[56] Stewart J. J. P., “Optimization of parameters for semi-empirical methods. I”, Method. J. Comp. Chem., 10:2 (1989), 209–220 ; “Optimization of parameters for semi-empirical methods. II: Applications”, 221–264 | DOI

[57] Terpstra R. A., Bennema P., Hartman P., Woensdregt C. F., Perdok W. G., Senechal M. L., “F faces of apatite and its morphology: theory and observation”, J. Crystal Growth, 78 (1986), 468–478 | DOI

[58] Wenge Jiang, Haihua Pan, Yurong Cai, Jinhui Tao, Peng Liu, Xurong Xu, Ruikang Tang, “Atomic Force Microscopy Reveals Hydroxyapatite-Citrate Interfacial Structure at the Atomic Level”, Langmuir, 24 (2008), 12446–12451 | DOI

[59] Hu Y.-Y., Rawal A., Schmidt-Rohr K., “Strongly bound citrate stabilizes the apatite nanocrystals in bone”, PNAS, 107:52 (2010), 22425–22429 | DOI

[60] Vandiver J., Dean D., Patel N., Bonfield W., Ortiz C., “Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy”, Biomaterials, 26 (2005), 271–283 | DOI

[61] Horiuchi N., Nakaguki S., Wada N., Nozaki K., Nakamura M., Nagai A., Katayama K., Yamashita K., “Polarization-induced surface charges in hydroxyapatite ceramics”, J. Appl. Phys., 116 (2014), 01490 | DOI

[62] Johann F., Soergel E., “Quantitative measurement of the surface charge density”, Appl. Phys. Lett., 95 (2009), 232906 | DOI

[63] Bystrov V. S., Seyedhosseini E., Kopyl S., Bdikin I., Kholkin A., “Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements”, J. Appl. Phys., 116:6 (2014), 066803 | DOI

[64] Bystrov V. S., Bdikin I., Heredia A., Pullar R. C., Mishina E., Sigov A. S., Kholkin A. L., “Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes”, Piezoelectric Nanomaterials for Biomedical Applications, Chapter 7, eds. Ciofani G., Menciassi A., Springer-Verlag, Berlin–Heidelberg, 2012, 187–211 | DOI

[65] Halperin C., Mutchnik S., Argonin A., Molotski M., Urenski P., Salai M., Rosenman G., “Piezoelectric effect in Human Bones Studied in Nanometer Scale”, Nano Lett., 4:7 (2004), 1253–1256 | DOI

[66] Kittel C., Introduction to solid state physics, J. Wiley and Sons, Inc., New York, 1978

[67] Slepko A., Theory of Biomineral Hydroxyapatite, PhD Thesis, University of Texas at Austin, 2013, 160 pp.

[68] VASP (Vienna Ab initio Simulation Package), (accessed 22.11.16) https://www.vasp.at/

[69] Hollinger J. O., Einhorn T. A., Doll B., Sfeir C., Bone Tissue Engineering, CRC Press, Washington, 2004, 91

[70] Yamashita K., Oikawa N., Umegaki T., “Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling”, Chem. Mater., 8 (1996), 2697 | DOI

[71] Kanakis J., Chrissanthopoulos A., Tnaetos N., Kallitsis A., Dalas E., “Crystallization of Hydroxyapatite on Oxadiazole-Based Homopolymers”, Cryst. Growth Des., 6 (2006), 1547 | DOI

[72] Cruz F. J. A. L., Minas da Piedade M. E., Calado J. C. G., “Standard molar enthalpies of formation of hydroxy-, chlor-, and bromapatite”, J. Chem. Thermodynamics, 37 (2005), 1061 | DOI

[73] Bystrov V. S., Piccirillo C., Tobaldi D. M., Castro P. M. L., Coutinho J., Kopyl S., Pullar R. C., “Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data”, Applied Catalysis B: Environmental, 196 (2016), 100–107 | DOI

[74] Bystrov V. S., Pullar R. C., Kopyl S., Piccirillo C., Coutinho J., “Computational Studies of the Vacancies in Hydroxyapatite”, Book of abstracts of the 1st international Conference on Materials Design and Applications 2016, MDA2016 (30 June–1 July, 2016, Portugal, Porto, Faculty of Engineering, University of Porto), 2016, MDA16-55, 43

[75] Sato K., Kogure T., Iwai H., Tanaka J., “Atomic-Scale $\{101^-0\}$ Interfacial Structure in Hydroxyapatite Determined by High-Resolution Transmission Electron Microscopy”, J. Am. Ceram. Soc., 85 (2002), 3054 | DOI