The model of structurization of urban ecosystems as the process of self-organization in active media
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 186-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of spatiotemporal self-organization of urban ecosystems as a superposition of conjugate active media, that takes into account inhomogeneities of anthropogenic and natural factors is proposed. This type of ecosystems is characterized by a high rate of population growth and density due to the concentration of residential, industrial, commercial and other facilities, as well as means of communication. These conditions violate the dynamic equilibrium of energy, substance and information flows, reduce the “buffer capacity” of natural subsystems, increase the nonlinearity, and, as a consequence, instability of system processes. The model is based on the modified by the authors Fitz-Hugh-Nagumo equations, taking into account the inhomogeneities of the anthropogenic (activator) and natural (inhibitor) factors. The validity of the application of this type of equations is determined by the relative simplicity of the system analysis of two equations of the "activator-inhibitor" type. The conditions for the formation of an excitable/unexcitable state of the active medium and the initial burst of an autowave depending on the population density and the kinetic parameters of the system (activator and inhibitor), as well as the criteria for the formation of transition zones between cities, are obtained (based on calculations made from aerial photography). The obtained value of the dimensionless model population density in the region of the transition layer (the barrier on the path of the autowave front) and on the outskirts of residential arrays made it possible to reveal the proportionality coefficient between the parameters of the model problem and the corresponding values in a real urban environment. The dimensionless model is confirmed by data on population density and population density and Moscow map data from 1946 to 2014. The model makes it possible to identify threshold values of control parameters and to consider the basic principles of development of autowave processes forming the structures of urban ecosystems.
@article{MBB_2017_12_1_a12,
     author = {A. E. Sidorova and N. T. Levashova and A. A. Melnikova and A. E. Semina},
     title = {The model of structurization of urban ecosystems as the process of self-organization in active media},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {186--197},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/}
}
TY  - JOUR
AU  - A. E. Sidorova
AU  - N. T. Levashova
AU  - A. A. Melnikova
AU  - A. E. Semina
TI  - The model of structurization of urban ecosystems as the process of self-organization in active media
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 186
EP  - 197
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/
LA  - ru
ID  - MBB_2017_12_1_a12
ER  - 
%0 Journal Article
%A A. E. Sidorova
%A N. T. Levashova
%A A. A. Melnikova
%A A. E. Semina
%T The model of structurization of urban ecosystems as the process of self-organization in active media
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 186-197
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/
%G ru
%F MBB_2017_12_1_a12
A. E. Sidorova; N. T. Levashova; A. A. Melnikova; A. E. Semina. The model of structurization of urban ecosystems as the process of self-organization in active media. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 186-197. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/

[1] Helbich M., Leitner M., “Postuburban spatial evolution of Vienna's Urban Fringe: evidence from point process modeling”, Urban Geography, 31:8 (2010), 1100–1117 | DOI

[2] Yorgos Y. Papageorgiou, “Population density in a central-place system”, Journal of Regional Science, 54:3 (2014), 450–461 | MR

[3] Vaz E., Arsanjani J. J., “Predicting urban growth of the Greater Toronto Area — coupling a Markov cellular automata with document meta-analysis”, Journal of Environmental Informatics, 25:2 (2015), 71–80 | DOI

[4] Frankhauser P., “Fractal geometry of urban patterns and their morphogenesis”, Discrete Dynamics in Nature and Society, 2:2 (1998), 127–145 | DOI

[5] Sidorova A. E., Levashova N. T., Melnikova A. A., Yakovenko L. V., “Populyatsionnaya model urboekosistem v predstavleniyakh aktivnykh sred”, Biofizika, 60:3 (2015), 574–582

[6] Sidorova A. E., Mukhartova Yu. V., Yakovenko L. V., “Urboekosistemy kak superpozitsiya sopryazhennykh aktivnykh sred”, Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2014, no. 5, 29–35

[7] Sidorova A. E., Levashova N. T., Melnikova A. A., Deryugina N. N., Semina A. E., “Avtovolnovaya samoorganizatsiya v neodnorodnykh prirodno-antropogennykh ekosistemakh”, Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2016, no. 6, 39–45

[8] Levashova N., Melnikova A., Semina A., Sidorova A., “Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media”, Communication on Applied Mathematics and Computation, 31:1 (2017), 32–42

[9] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, Berlin–Heidelberg, 2003, 811 pp. | MR

[10] Elkin Yu. V., “Avtovolnovye protsessy (kratkii obzor)”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 27–40 | DOI

[11] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.

[12] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp.

[13] Tverdislov V. A., Malyshko E. V., Ilchenko S. A., “Ot avtovolnovykh mekhanizmov samoorganizatsii k molekulyarnym mashinam”, Izvestiya RAN. Seriya fizicheskaya, 79:12 (2015), 1728–1732 | DOI

[14] Savenko V. S., Geokhimicheskie aspekty ustoichivogo razvitiya, GEOS, M., 2003, 180 pp.

[15] FitzHugh R. A., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1961, 445–466 | DOI

[16] Kalitkin N. N., Koryakin P. V., Chislennye metody, v 2 kn., v. 2, Metody matematicheskoi fiziki, Izdatelskii tsentr «Akademiya», M., 2013, 303 pp.

[17] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003, 316 pp.

[18] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:11 (2012), 1983–2003

[19] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme ellipticheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:9 (2013), 9–29 | DOI

[20] Retromap: karta Moskovskoi oblasti, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=0120090&z=12&y=55.990636&x=37.886282

[21] Retromap: karta g. Korolev Moskovskoi oblasti, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=0120090&z=13&y=55.921404&x=37.825514

[22] Retromap: karta g. Moskva, raion Filevskii park, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051946&z=14&y=55.743646&x=37.478585

[23] Retromap: karta g. Moskva, raion Fili-Davydkovo, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051952&z=15&y=55.737463&x=37.475325

[24] Retromap: karta g. Moskva, prefektura Zapadnogo okruga (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051968&z=16&y=55.727146&x=37.443439