Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_1_a12, author = {A. E. Sidorova and N. T. Levashova and A. A. Melnikova and A. E. Semina}, title = {The model of structurization of urban ecosystems as the process of self-organization in active media}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {186--197}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/} }
TY - JOUR AU - A. E. Sidorova AU - N. T. Levashova AU - A. A. Melnikova AU - A. E. Semina TI - The model of structurization of urban ecosystems as the process of self-organization in active media JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 186 EP - 197 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/ LA - ru ID - MBB_2017_12_1_a12 ER -
%0 Journal Article %A A. E. Sidorova %A N. T. Levashova %A A. A. Melnikova %A A. E. Semina %T The model of structurization of urban ecosystems as the process of self-organization in active media %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 186-197 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/ %G ru %F MBB_2017_12_1_a12
A. E. Sidorova; N. T. Levashova; A. A. Melnikova; A. E. Semina. The model of structurization of urban ecosystems as the process of self-organization in active media. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 186-197. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a12/
[1] Helbich M., Leitner M., “Postuburban spatial evolution of Vienna's Urban Fringe: evidence from point process modeling”, Urban Geography, 31:8 (2010), 1100–1117 | DOI
[2] Yorgos Y. Papageorgiou, “Population density in a central-place system”, Journal of Regional Science, 54:3 (2014), 450–461 | MR
[3] Vaz E., Arsanjani J. J., “Predicting urban growth of the Greater Toronto Area — coupling a Markov cellular automata with document meta-analysis”, Journal of Environmental Informatics, 25:2 (2015), 71–80 | DOI
[4] Frankhauser P., “Fractal geometry of urban patterns and their morphogenesis”, Discrete Dynamics in Nature and Society, 2:2 (1998), 127–145 | DOI
[5] Sidorova A. E., Levashova N. T., Melnikova A. A., Yakovenko L. V., “Populyatsionnaya model urboekosistem v predstavleniyakh aktivnykh sred”, Biofizika, 60:3 (2015), 574–582
[6] Sidorova A. E., Mukhartova Yu. V., Yakovenko L. V., “Urboekosistemy kak superpozitsiya sopryazhennykh aktivnykh sred”, Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2014, no. 5, 29–35
[7] Sidorova A. E., Levashova N. T., Melnikova A. A., Deryugina N. N., Semina A. E., “Avtovolnovaya samoorganizatsiya v neodnorodnykh prirodno-antropogennykh ekosistemakh”, Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya, 2016, no. 6, 39–45
[8] Levashova N., Melnikova A., Semina A., Sidorova A., “Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media”, Communication on Applied Mathematics and Computation, 31:1 (2017), 32–42
[9] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, Berlin–Heidelberg, 2003, 811 pp. | MR
[10] Elkin Yu. V., “Avtovolnovye protsessy (kratkii obzor)”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 27–40 | DOI
[11] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.
[12] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp.
[13] Tverdislov V. A., Malyshko E. V., Ilchenko S. A., “Ot avtovolnovykh mekhanizmov samoorganizatsii k molekulyarnym mashinam”, Izvestiya RAN. Seriya fizicheskaya, 79:12 (2015), 1728–1732 | DOI
[14] Savenko V. S., Geokhimicheskie aspekty ustoichivogo razvitiya, GEOS, M., 2003, 180 pp.
[15] FitzHugh R. A., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1961, 445–466 | DOI
[16] Kalitkin N. N., Koryakin P. V., Chislennye metody, v 2 kn., v. 2, Metody matematicheskoi fiziki, Izdatelskii tsentr «Akademiya», M., 2013, 303 pp.
[17] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003, 316 pp.
[18] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:11 (2012), 1983–2003
[19] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme ellipticheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:9 (2013), 9–29 | DOI
[20] Retromap: karta Moskovskoi oblasti, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=0120090&z=12&y=55.990636&x=37.886282
[21] Retromap: karta g. Korolev Moskovskoi oblasti, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=0120090&z=13&y=55.921404&x=37.825514
[22] Retromap: karta g. Moskva, raion Filevskii park, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051946&z=14&y=55.743646&x=37.478585
[23] Retromap: karta g. Moskva, raion Fili-Davydkovo, (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051952&z=15&y=55.737463&x=37.475325
[24] Retromap: karta g. Moskva, prefektura Zapadnogo okruga (data obrascheniya: 20.04.2017) http://www.retromap.ru/m.php#l=051968&z=16&y=55.727146&x=37.443439