Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 224-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The usage of a non-autonomous discrete model (Ricker model) for describing the dynamics of a biological population is considered. It is shown that in case of periodic changes in parameters, the model can be reduced into equivalent autonomous system. The problems of determining the model parameters in a situation where these parameters depend on time are discussed. As an application, the problem of mathematical modeling of the dynamics of the number of families of the natural population of the Burzyan wild-hive honeybee living on the territory of the Republic of Bashkortostan is considered. The results convincingly demonstrate the fact that the dynamics of the Burzyan Wild-Hive Honeybee is significantly influenced by a combination of natural factors. For example the sum of the precipitation in February is particularly significant here (in particular, the increase in precipitation affects the number of bees negatively) and the temperature values in March, April and June.
@article{MBB_2017_12_1_a10,
     author = {L. S. Ibragimova and M. G. Yumagulov and A. R. Ishbirdin and M. M. Ishmuratova},
     title = {Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the {Burzyan} wild-hive honeybee {(Apismellifera} {L.,} 1758)},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {224--236},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a10/}
}
TY  - JOUR
AU  - L. S. Ibragimova
AU  - M. G. Yumagulov
AU  - A. R. Ishbirdin
AU  - M. M. Ishmuratova
TI  - Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 224
EP  - 236
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a10/
LA  - ru
ID  - MBB_2017_12_1_a10
ER  - 
%0 Journal Article
%A L. S. Ibragimova
%A M. G. Yumagulov
%A A. R. Ishbirdin
%A M. M. Ishmuratova
%T Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 224-236
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a10/
%G ru
%F MBB_2017_12_1_a10
L. S. Ibragimova; M. G. Yumagulov; A. R. Ishbirdin; M. M. Ishmuratova. Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758). Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 224-236. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a10/

[1] Bratus A. S., Novozhilov A. S., Platonov A. P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.

[2] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2002, 232 pp.

[3] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp.

[4] Plyusnina T. Yu., Fursova P. V., Terlova L. D., Riznichenko G. Yu., Matematicheskie modeli v biologii, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2014, 136 pp.

[5] Nedorezov L. V., “Analiz dinamiki chislennosti sosnovoi pyadenitsy s pomoschyu diskretnykh matematicheskikh modelei”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 114–123 | DOI

[6] Sidorin A. P., “Povedenie populyatsii s neskolkimi statsionarnymi sostoyaniyami v sluchainoi srede”, Matematicheskie modeli v ekologii i genetike, Nauka, M., 1981, 71–74

[7] Neverova G. P., Frisman E. Ya., “Matematicheskoe modelirovanie dinamiki lokalnykh odnorodnykh populyatsii s uchetom effektov zapazdyvaniya”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 309–324 | DOI

[8] Frisman E. Ya., Neverova G. P., Kulakov M. P., Zhigalskii O. A., “Smena dinamicheskikh rezhimov v populyatsiyakh vidov s korotkim zhiznennym tsiklom: rezultaty analiticheskogo i chislennogo issledovaniya”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 414–429 | DOI

[9] Li J., “Discrete-time models with mosquitoes carrying genetically-modified bacteria”, Mathematical Biosciences, 240:1 (2012), 35–44 | DOI | MR

[10] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 368 pp.

[11] Yumagulov M. G., Vvedenie v teoriyu dinamicheskikh sistem, Lan, SPb., 2015, 272 pp.

[12] Ricker W. E., “Stock and recruitment”, J. Fish. Res. Board of Canada, 11:5 (1954), 559–623 | DOI

[13] Deich A. M., Metody identifikatsii dinamicheskikh ob'ektov, Energiya, M., 1979, 240 pp.

[14] Lyung L., Identifikatsiya sistem. Teoriya dlya polzovatelya, Nauka, M., 1991, 432 pp.

[15] Shlyufman K. V., Neverova G. P., Frisman E. Ya., “2-tsikly uravneniya Rikera s periodicheski izmenyayuschimsya maltuzianskim parametrom: ustoichivost i multistabilnost”, Nelineinaya dinamika, 12:4 (2016), 553–565 | DOI

[16] Ashikhmina E. V., Izrailskii Yu. G., Frisman E. Ya., “Dinamicheskoe povedenie modeli Rikera pri tsiklicheskom izmenenii odnogo iz parametrov”, Vestnik DVO RAN, 2004, no. 5, 19–28

[17] Sacker R. J., von Bremen H. F., “A conjecture on the stability of the periodic solutions of Ricker's equation with periodic parameters”, Appl. Math. Comput., 217:3 (2010), 1213–1219 | MR

[18] Shlyufman K. V., Fishman B. E., Frisman E. Ya., “Osobennosti dinamicheskikh rezhimov odnomernoi modeli Rikera”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 20:2 (2012), 12–28

[19] Dreiper N., Smit G., Prikladnoi regressionnyi analiz, v. 1, Finansy i statistika, M., 1986, 366 pp.

[20] Kosarev M. N., Yumaguzhin F. G., Nugumanov R. G., “O dinamike chislennosti semei pchel bashkirskoi populyatsii, zaselyaemosti bortei i kolodnykh ulev v gosudarstvennom prirodnom zapovednike «Shulgan-Tash»”, Ispolzovanie biologicheski aktivnykh produktov pchelovodstva v zhivotnovodstve i veterinarnoi meditsine, Sb. nauchnykh trudov, VGNKI. BGAU, Moskva–Ufa, 1999, 118–121

[21] Sharipov A. Ya., Ishbirdin A. R., “Populyatsionnaya dinamika bortevoi pchely (Apis mellifera mellifera L.) v zapovednike «Shulgan-Tash» za polveka nablyudenii”, Problemy populyatsionnoi ekologii, Materialy vserossiiskogo seminara «Gomeostaticheskie mekhanizmy biologicheskikh sistem», ed. Rozenberg G. S., Kassandra, Tolyatti, 2015, 336–341

[22] Sharipov A. Ya., “Vliyanie izmenenii klimata na sostoyanie burzyanskikh bortevykh pchel”, Vestnik Orenburgskogo gosudarstvennogo universiteta, 2010, no. 12, 78–81

[23] Vitinskii Yu. I., Kopetskii M., Kuklin G. V., Statistika pyatnoobrazovatelnoi deyatelnosti Solntsa, Nauka, M., 1986, 296 pp.