The study of interhelical angles in the structural motifs formed by two helices
Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 83-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a statistical analysis of distributions of inter-helical angles in pairs of consecutive and connected $\alpha$-helices in spatial structures of proteins is presented. A number of rules for selection of the helical pairs from a set of protein structures obtained from the Protein Data Bank (PDB) were developed. The set of helical pairs has been analyzed for the purpose of classification and finding out the features of protein structural organization. All pairs of connected helices were divided into three subsets according to the criterion of crossing of projections of the helices on parallel planes, which pass through the axes of the helices. It is shown that the distribution of all types of helical pairs, whose projections do not cross each others, covers almost the entire range of inter-helical angles. The distribution have a single maximum which is close to right angle. Most pairs in this set constitute helical pairs consisting of $\alpha$- and $3_{10}$-helices, and most pairs with the crossing projections of helices are helical pairs formed by two $\alpha$-helices. It is also shown that a great amount of the pairs of connected $\alpha$-helices has acute angle $20^\circ \leqslant\varphi \leqslant 60^\circ$ between the axes of the helices. The distribution of all types of helical pairs depending on the length of the inter-helical connections was also analyzed. It is shown that the structures with short connections occur most often in all the subsets.
@article{MBB_2017_12_1_a1,
     author = {D. A. Tikhonov and L. I. Kulikova and A. V. Efimov},
     title = {The study of interhelical angles in the structural motifs formed by two helices},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {83--101},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a1/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - L. I. Kulikova
AU  - A. V. Efimov
TI  - The study of interhelical angles in the structural motifs formed by two helices
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2017
SP  - 83
EP  - 101
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a1/
LA  - ru
ID  - MBB_2017_12_1_a1
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A L. I. Kulikova
%A A. V. Efimov
%T The study of interhelical angles in the structural motifs formed by two helices
%J Matematičeskaâ biologiâ i bioinformatika
%D 2017
%P 83-101
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a1/
%G ru
%F MBB_2017_12_1_a1
D. A. Tikhonov; L. I. Kulikova; A. V. Efimov. The study of interhelical angles in the structural motifs formed by two helices. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/MBB_2017_12_1_a1/

[1] Efimov A. V., “Standard structures in proteins”, Prog. Biophys. Molec. Biol., 60 (1993), 201–239 | DOI

[2] Gordeev A. B., Kargatov A. M., Efimov A. V., “PCBOST: Protein classification based on structural trees”, Biochemical and Biophysical Research Communications, 397 (2010), 470–471 | DOI

[3] Efimov A. V., “Super-secondary structures and modeling of protein folds”, Methods in Molecular Biology, 932, ed. Kister A. E., Humana Press, Clifton, 2013, 177–189 | DOI

[4] Brazhnikov E. V., Efimov A. V., “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 | DOI

[5] Rudnev V. R., Pankratov A. N., Kulikova L. I., Dedus F. F., Tikhonov D. A., Efimov A. V., “Raspoznavanie i analiz ustoichivosti strukturnykh motivov tipa $\alpha$-$\alpha$-ugolok v globulyarnykh belkakh”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 398–406 | DOI

[6] Rudnev V. R., Pankratov A. N., Kulikova L. I., Dedus F. F., Tikhonov D. A., Efimov A. V., “Konformatsionnyi analiz strukturnykh motivov tipa $\alpha$-$\alpha$-ugolok v vychislitelnom eksperimente molekulyarnoi dinamiki”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 575–584 | DOI

[7] Dedus F. F., Makhortykh S. A., Ustinin M. N., Dedus A. F., Obobschennyi spektralno-analiticheskii metod obrabotki informatsionnykh massivov. Zadachi analiza izobrazhenii i raspoznavaniya obrazov, «Mashinostroenie», M., 1999, 357 pp.

[8] Dedus F. F., Makhortykh S. A., Ustinin M. N., “Application of the Generalized Spectral-Analytic Method in Information Problems”, Pattern Recognition and Image Analysis, 12:4 (2002), 429–437

[9] Pankratov A. N., Tetuev R. K., Pyatkov M. I., Toigildin V. P., Popova N. N., “Spektralno-analiticheskii metod raspoznavaniya netochnykh povtorov v simvolnykh posledovatelnostyakh”, Trudy Instituta sistemnogo programmirovaniya RAN, 27:6 (2015), 335–344

[10] Finkelshtein A. V., Fizika belkovykh molekul, ANO «Izhevskii institut kompyuternykh issledovanii», M.–Izhevsk, 2014, 424 pp.

[11] Ptitsyn O. B., Filkenshtein A. V., “Problemy predskazaniya struktury belka”, Itogi nauki i tekhniki. Seriya «Molekulyarnaya biologiya», 15, ed. Volkenshtein M. D., VINITI, M., 1979, 6–41

[12] Shults G. E., Shirmer R. Kh., Printsipy strukturnoi organizatsii belkov, Mir, M., 1982, 354 pp.

[13] Miller S., Janin J., Lesk A. M., Chothia C., “Interior and surfage of monomeric proteins”, Molecular Biology, 196 (1987), 641–656 | DOI

[14] Creighton T. E., Proteins, W.H. Freeman Co, N.Y., 1991

[15] Stepanov V. M., Molekulyarnaya biologiya. Struktura i funktsii belkov, Vysshaya shkola, M., 1996, 336 pp.

[16] Tsai F. C., Sherman J. C., “Circular dichroism analysis of a synthetic peptide corresponding to the $\alpha$-$\alpha$-corner motif of hemoglobin”, Biochemical and Biophysical Research Communications, 196:1 (1993), 435–439 | DOI

[17] Tikhonov D. A., Kulikova L. I., Efimov A. V., “Statisticheskii analiz vnutrennikh rasstoyanii spiralnykh par v belkovykh molekulakh”, Matematicheskaya biologiya i bioinformatika, 11:2 (2016), 170–190 | DOI

[18] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 | DOI

[19] Crick F. H. C., “The Packing of a-Helices: Simple Coiled-Coils”, Acta Crystallographica, 6 (1953), 689–697 | DOI

[20] Lee H. S., Choi J., Yoon S., “QHELIX: A Computational Tool for the Improved Measurement of Inter-Helical Angles in Proteins”, Protein, 26 (2007), 556–561 | DOI

[21] Walther D., Eisenhaber F., Argos P., “Principles of Helix-Helix Packing in Proteins: The Helical Lattice Superposition Model”, Molecular Biology, 255 (1996), 536–553 | DOI

[22] Chothia C., Levitt M., Richardson D., “Structure of proteins: Packing of $\alpha$-helices and pleated sheets”, Proc. Natl. Acad. Sci., 74 (1977), 4130–4134 | DOI

[23] Chothia C., Levitt M., Richardson D., “Helix to Helix Packing in Proteins”, Molecular Biology, 145 (1981), 215–250 | DOI

[24] Levitt M., Chothia C., “Structural patterns in globular proteins”, Nature, 261 (1976), 552–558 | DOI

[25] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 22:12 (1983), 2577–2637 | DOI

[26] Kabsch W., “A solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 32 (1976), 922–923 | DOI

[27] Kabsch W., “A discussion of the solution for the best rotation to relate two sets of vectors”, Acta Crystallographica, 34 (1978), 827–828 | DOI

[28] Legland D., MatGeom: Matlab geometry toolbox for 2D/3D geometric computing, (data obrascheniya: 17.09.2015) http://github.com/dlegland/matGeom