REP-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016), pp. t1-t14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the intergenic regions of the Escherichia coli genome there are 356 REP-elements, containing 1–12 repeated sequences with degenerated consensus. Their biological role is poorly understood, but multiplicity in the genome, preferential localization between convergent genes and ability to form hairpin structures have led to the assumption that REP-elements participate in the transcription termination and processes affecting stability of the corresponding RNAs. Though the direct experiments did not confirm the ability of the studied REP-sequence to stop RNA synthesis and some ambiguity regarding their primary function still exists. In this study, positional and functional analysis was undertaken for the entire set of annotated REP-sequences and the reduced efficiency of RNA synthesis behind the many REP-modules was observed. For all that some REP-modules did not affect the processivity of RNA synthesis, assuming their read-through transcription and further possibility to be involved in the regulatory events. We also observed REP-associated transcription activation and found overlapping promoters. The most unexpected was specific distribution of REP-sequences nearby the promoter islands, which assumes an insulator-like action of these sequences, maintaining transcriptional autonomy of the islands, and indicates functional significance of the island-born RNAs.
@article{MBB_2016_11_a0,
     author = {N. Yu. Markelova and I. S. Masulis and O. N. Ozoline},
     title = {REP-elements of the {\emph{Escherichia} coli} genome and transcription signals: positional and functional analysis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t1--t14},
     publisher = {mathdoc},
     volume = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_a0/}
}
TY  - JOUR
AU  - N. Yu. Markelova
AU  - I. S. Masulis
AU  - O. N. Ozoline
TI  - REP-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - t1
EP  - t14
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_a0/
LA  - en
ID  - MBB_2016_11_a0
ER  - 
%0 Journal Article
%A N. Yu. Markelova
%A I. S. Masulis
%A O. N. Ozoline
%T REP-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P t1-t14
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_a0/
%G en
%F MBB_2016_11_a0
N. Yu. Markelova; I. S. Masulis; O. N. Ozoline. REP-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016), pp. t1-t14. http://geodesic.mathdoc.fr/item/MBB_2016_11_a0/

[1] Stern M. J., Ames G. F. L., Smith N. H., Robinson E. C., Higgins C. F., “Repetitive extragenic palindromic sequences: a major component of the bacterial genome”, Cell, 37 (1984), 1015–1026 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(84)90436-7'>10.1016/0092-8674(84)90436-7</ext-link>

[2] Higgins C. F., McLaren R. S., Newbury S. F., Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion?, J. Gene., 72 (1988), 3–14 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0378-1119(88)90122-9'>10.1016/0378-1119(88)90122-9</ext-link>

[3] Stern M. J., Prossnitz E., Ames G. F. L., “Role of the intercistronic region in posttranscriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences”, Mol. Microbiol., 2 (1988), 141–152 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.1988.tb00015.x'>10.1111/j.1365-2958.1988.tb00015.x</ext-link>

[4] Espeli O., Moulin L., Boccard F., “Transcription attenuation associated with bacterial repetitive extragenic BIME elements”, Mol. Biol., 314 (2001), 375–386 <ext-link ext-link-type='doi' href='https://doi.org/10.1006%2Fjmbi.2001.5150'>10.1006%2Fjmbi.2001.5150</ext-link>

[5] Merino E., Becerril B., Valle F., Bolivar F., “Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Essherihia coli glutamate dehydrogenase affects the stability of its mRNA”, Gene, 58 (1987), 305–309 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0378-1119(87)90386-6'>10.1016/0378-1119(87)90386-6</ext-link>

[6] Newbury S. F., Smith N. H., Robinson E. C., HiIes I. D., Higgins C. F., “Stabilization of translationally active mRNA by prokaryotic REP sequences”, Cell, 48 (1987), 297–310 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(87)90433-8'>10.1016/0092-8674(87)90433-8</ext-link>

[7] Bachellier S., Clement J. M., Hofnung M., “Short palindromic repetitive DNA elements in enterobacteria: a survey”, J. Res. Microbiol., 150 (1999), 627–639 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0923-2508(99)00128-X'>10.1016/S0923-2508(99)00128-X</ext-link>

[8] Khemici V., Carpousis A. J., “The RNA degradosome and poly(A) polymerase of Escherichia coli are required in vivo for the degradation of small mRNA decay intermediates containing REP-stabilizers”, Mol. Microbiol., 51 (2004), 777–790 <ext-link ext-link-type='doi' href='https://doi.org/10.1046/j.1365-2958.2003.03862.x'>10.1046/j.1365-2958.2003.03862.x</ext-link>

[9] Ton-Hoang B., Siguier P., Quentin Y., Onillon S., Marty B., Fichant G., Chandler M., “Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences”, J. Nucleic Acids Res., 40 (2012), 3596–3609 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkr1198'>10.1093/nar/gkr1198</ext-link>

[10] Moulin L., Rahmouni A. R., Boccard F., “Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli”, Mol. Microbiol., 55 (2005), 601–610 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2958.2004.04411.x'>10.1111/j.1365-2958.2004.04411.x</ext-link>

[11] Messing S. A., Ton-Hoang B., Hickman A. B., McCubbin A. J., Peaslee G. F., Ghirlando R., Chandler M., Dyda F., “The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease”, J. Nucleic Acids Res., 40 (2012), 9964–9979 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gks741'>10.1093/nar/gks741</ext-link>

[12] Di Nocera P. P., De Gregorio E., Rocco F., “GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes”, J. BMC Genomics, 14 (2013), 522 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2164-14-522'>10.1186/1471-2164-14-522</ext-link>

[13] Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muniz-Rascado L., Garcia-Sotelo J. S., Weiss V., Solano-Lira H., Martinez-Flores I., Medina-Rivera A. et al., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more”, Nucleic Acids Res., 41 (2013), D203 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gks1201'>10.1093/nar/gks1201</ext-link>

[14] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozoline O. N., “Mixed promoter islands as genomic regions with specific structural and functional properties”, Mathematical Biology and Bioinformatics, 8:2 (2013), 432–448 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2013.8.432'>10.17537/2013.8.432</ext-link>

[15] Kiselev S. S., Ozoline O. N., “Structure-specific modules as indicators of promoter DNA in bacterial genomes”, Mathematical Biology and Bioinformatics, 6:1 (2011), 39–52 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2011.6.39'>10.17537/2011.6.39</ext-link>

[16] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons from genome-scale promoter mapping”, Nucl. Acids Res., 37 (2009), 4919–4931 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkp490'>10.1093/nar/gkp490</ext-link>

[17] Reppas N. B., Wade J. T., Church G. M., Struhl K., “The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting”, Mol. Cell., 24 (2006), 747–757 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2006.10.030'>10.1016/j.molcel.2006.10.030</ext-link>

[18] NCBI Microbial Nucleotide BLAST, (data obrascheniya: 07.06.2015) <ext-link ext-link-type='uri' href='http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&amp;BLAST_SPEC=MicrobialGenomes'>http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&amp;BLAST_SPEC=MicrobialGenomes</ext-link>

[19] Igarashi K., Ishihama A., “Bipartite functional map of the E. coli RNA polymerase $\alpha$ subunit: involvement of the C-Terminal region in transcription activation by CAMP-CRP”, Cell, 65 (1991), 1015–1022 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0092-8674(91)90553-B'>10.1016/0092-8674(91)90553-B</ext-link>

[20] Mathews D. H., “RNA secondary structure analysis using RNA-structure”, Current Protocols in Bioinformatics, 46 (2014), 12.6.1–12.6.25 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/0471250953.bi1206s46'>10.1002/0471250953.bi1206s46</ext-link>

[21] Liang W., Rudd K. E., Deutscher M. P., “A Role for REP sequences in regulating translation”, Mol. Cell., 58:3 (2015), 431–439 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.molcel.2015.03.019'>10.1016/j.molcel.2015.03.019</ext-link>

[22] Brok-Volchanski A. S., Masulis I. S., Shavkunov K. S., Lukyanov V. I., Purtov Yu. A., Kostyanicina E. G., Deev A. A., Ozoline O. N., “Predicting sRNA genes in the genome of E. coli by the promoter-search algorithm PlatProm”, Bioinformatics of Genome Regulation and Structure II, eds. Kolchanov N., Hofestaedt R., Springer, 2005, 11–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/0-387-29455-4_2'>10.1007/0-387-29455-4_2</ext-link>

[23] Panyukov V. V., Ozoline O. N., “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS ONE, 8 (2013), e62601 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0062601'>10.1371/journal.pone.0062601</ext-link>

[24] Purtov Yu. A., Glazunova O. A., Antipov S. S., Pokusaeva V. O., Fesenko E. E., Preobrazhenskaya V. V., Shavkunov K. S., Tutukina M. N., Lukyanov V. I., Ozoline O. N., “Promoter islands as a platform for interaction with nucleoid proteins and transcription factors”, J. Bioinformatics and Computational Biology, 12:2 (2014), 322–331 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0219720014410066'>10.1142/S0219720014410066</ext-link>

[25] Vogel J., Bartels V., Tang T. H., Churakov G., Slagter-Jäger J. G., Hüttenhofer A., Wagner E. G., “RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria”, Nucleic Acids Res., 31 (2003), 6435–6443 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkg867'>10.1093/nar/gkg867</ext-link>

[26] Miyakoshi M., Chao Y., Vogel J., “Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA”, EMBO J., 34 (2015), 1478–1492 <ext-link ext-link-type='doi' href='https://doi.org/10.15252/embj.201490546'>10.15252/embj.201490546</ext-link>