Mathematical problems of metabolic pathway organization from biochemical reactions
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 406-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of metabolic pathway building from biochemical reactions is considered. For the given pair “main substrate–main product” it is necessary to select the reactions performing this conversion and find all the attendant substrates and products. The approach is based on a system of stoichiometric equations for reaction rates. The mathematical problems are as follows: 1) a number of right-hand sides are initially unknown, 2) a part of the system with the known right-hand sides has less number of equations than variables, and 3) presence of irreversible reactions imposes restrictions on signs of the corresponding rates in the form of inequalities. The method is described enabling to solve these problems. It is found that many restrictions are represented as series of parallel hyperplanes in the space of variables. This fact makes it possible to eliminate many restrictions and to find out a big number of fixed variables the values of which, thus, are found before the complete solving of the whole problem. The search of unnecessary restrictions and fixed variables is of the form of specific iterations due to which the problem is substantially simplified. Examples are given which display effectiveness of the approach described.
@article{MBB_2016_11_2_a9,
     author = {I. G. Minkevich},
     title = {Mathematical problems of metabolic pathway organization from biochemical reactions},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {406--425},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a9/}
}
TY  - JOUR
AU  - I. G. Minkevich
TI  - Mathematical problems of metabolic pathway organization from biochemical reactions
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 406
EP  - 425
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a9/
LA  - ru
ID  - MBB_2016_11_2_a9
ER  - 
%0 Journal Article
%A I. G. Minkevich
%T Mathematical problems of metabolic pathway organization from biochemical reactions
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 406-425
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a9/
%G ru
%F MBB_2016_11_2_a9
I. G. Minkevich. Mathematical problems of metabolic pathway organization from biochemical reactions. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 406-425. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a9/

[1] BRENDA: The Comprehensive Enzyme Information System, (data obrascheniya: 19.12.2016) http://www.brenda-enzymes.info/

[2] ExPASy: the SIB Bioinformatics Resource Portal, (data obrascheniya: 19.12.2016) http://www.expasy.org/

[3] KEGG: Kyoto Encyclopedia of Genes and Genomes, (data obrascheniya: 19.12.2016) http://www.genome.jp/kegg/

[4] MetaCyc: MetaCyc Metabolic Pathway Database, (data obrascheniya: 19.12.2016) https://metacyc.org/

[5] Minkevich I. G., Materialno-energeticheskii balans i kinetika rosta mikroorganizmov, RKhD, M.–Izhevsk, 2005

[6] Bordbar A., Nagarajan H., Lewis N. E., Latif H., Ebrahim E., Federowicz S., Schellenberger J., Palsson B. O., “Minimal metabolic pathway structure is consistent with associated biomolecular interactions”, Molecular Systems Biology, 10:737 (2014), 1–16

[7] Lee S., Phalakornkule C., Domach M. M., Ignacio E., Grossmann I. E., “Recursive MILP model for finding all the alternate optima in LP models for metabolic networks”, Computers and Chemical Engineering, 24 (2000), 711–716 | DOI

[8] Lewis N. E., Nagarajan H., Bernhard O., Palsson B. O., “Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods”, Nature Reviews. Microbiology, 10 (2012), 291–305

[9] Papin J. A., Stelling J., Price N. D., Klamt S., Schuster S., Palsson B. O., “Comparison of network-based pathway analysis methods”, Trends in Biotechnology, 22:8 (2004), 400–405 | DOI

[10] Schilling C. H., Palsson B. O., “The underlying pathway structure of biochemical reaction networks”, Proceedings of National Academy of Sciences USA, 95 (1998), 4193–4198 | DOI

[11] Schilling C. H., Schuster S., Palsson B. O., Heinrich R., “Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era”, Biotechnology Progress, 15:3 (1999), 296–303 | DOI

[12] Schuster S., Fell D. A., Dandekar T., “A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks”, Nature Biotechnology, 18 (2000), 326–332 | DOI

[13] Stepanov N. F., Erlykina M. E., Filippov G. G., Metody lineinoi algebry v fizicheskoi khimii, Izd-vo MGU, M., 1976

[14] Prigozhin I., Defei R., Khimicheskaya termodinamika, Nauka, Novosibirsk, 1966

[15] Minkevich I. G., “Nepolnye sistemy lineinykh uravnenii s ogranicheniyami na peremennye”, Kompyuternye issledovaniya i modelirovanie, 6:5 (2014), 719–745

[16] Chernikov S. N., “Lineinye neravenstva”, Itogi nauki. Ser. Mat. Algebra. Topol. Geom., 1968, 137–187

[17] Golikov A. I., Evtushenko Yu. G., “Novyi metod resheniya sistem lineinykh ravenstv i neravenstv”, DAN, 381:4 (2001), 444–447 | Zbl

[18] Bastrakov S. I., Zolotykh N. Yu., “Ispolzovanie idei algoritma Quickhull v metode dvoinogo opisaniya”, Vychislitelnye metody i programmirovanie, 12:2 (2011), 232–237

[19] Bastrakov S. I., Zolotykh N. Yu., “Bystryi sposob proverki pravila Chernikova v metode isklyucheniya Fure–Motskina”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:1 (2015), 165–172 | DOI | Zbl

[20] Minkevich I. G., “Stoichiometric synthesis of metabolic pathways”, Computer Research and Modeling, 7:6 (2015), 1241–1267