Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus \emph{Rickettsia}
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 336-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

Genomes representing Rickettsiaceae family were analyzed using formal order analysis (FOA) of information chain in order to develop a new approach for the classification of prokaryotes. Average remoteness — the numerical characteristic of order was used to compare the genomes. FOA allows one to directly take into account arrangement of nucleotides in each sequence. The obtained results clarified the previously known classification. In addition Rickettsia felis group was discovered between the ancestral group and spotted fever group (SFG) and R. akari group located between the SFG and genus Orientia. Software used for the analysis of nucleotide sequences with FOA is freely available at http://foarlab.org.
@article{MBB_2016_11_2_a6,
     author = {S. N. Shpynov and A. S. Gumenyuk and N. N. Pozdnichenko},
     title = {Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus {\emph{Rickettsia}}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {336--350},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a6/}
}
TY  - JOUR
AU  - S. N. Shpynov
AU  - A. S. Gumenyuk
AU  - N. N. Pozdnichenko
TI  - Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus \emph{Rickettsia}
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 336
EP  - 350
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a6/
LA  - ru
ID  - MBB_2016_11_2_a6
ER  - 
%0 Journal Article
%A S. N. Shpynov
%A A. S. Gumenyuk
%A N. N. Pozdnichenko
%T Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus \emph{Rickettsia}
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 336-350
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a6/
%G ru
%F MBB_2016_11_2_a6
S. N. Shpynov; A. S. Gumenyuk; N. N. Pozdnichenko. Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus \emph{Rickettsia}. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 336-350. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a6/

[1] Merhej V., Raoult D., “Rickettsial evolution in the light of comparative genomics”, Biol. Rev. Camb. Philos. Soc., 86:2 (2011), 379–405 | DOI

[2] Weiss E., Moulder J. W., “Order I. Rickettsiales Gieszczkiewicz 1939”, Bergey's manual of systematic bacteriology, v. 1, eds. N. R. Krieg, J. G. Holt, The Williams Wilkins Co., Baltimore, Md., 1984, 687–703

[3] Stothard D. R., Clark J. B., Fuerst P. A., “Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia”, Int. J. Syst. Bacteriol., 44 (1994), 798–804 | DOI

[4] Tamura A., Ohashi N., Urakami H., Miyamura S., “Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov.”, Int. J. Syst. Bacteriol., 45 (1995), 589–591 | DOI

[5] Gillespie J. J., Beier M. S., Rahman M. S., Ammerman N. C., Shallom J. M., Purkayastha A., Sobral B. S., Azad A. F., “Plasmids and rickettsial evolution: insight from Rickettsia felis”, PLoS One, 2 (2007), e266 | DOI

[6] Roux V., Raoult D., “Phylogenetic analysis and taxonomic relationships among the genus Rickettsia”, Rickettsiae and Rickettsial diseases at the turn of the third millennium, Elsevier production, Marseille, 1999, 52–66

[7] Fournier P. E., Dumler J. S., Greub G., Zhang J., Wu Y., Raoult D., “Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov”, J. Clin. Microbiol., 41 (2003), 5456–5465 | DOI

[8] Markov A. V., Zakharov I. A., “Ispolzovanie kolichestvennykh mer skhodstva gennykh poryadkov dlya postroeniya filogeneticheskikh rekonstruktsii na primere bakterii roda Rickettsia”, Genetika, 44:4 (2008), 456–466

[9] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., “Basic local alignment search tool”, J. Mol. Biol., 215:3 (1990), 403–410 | DOI

[10] Kumar S., Stecher G., Tamura K., “MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets”, Molecular Biology and Evolution, 33 (2016), 1870–1874 | DOI

[11] Darling A. E., Mau B., Perna N. T., “ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement”, PLoS One, 25:5(6) (2010), e11147 | DOI

[12] Du W., Cao Z., Wang Y., Sun Y., Blanzieri E., Liang Y., “Prokaryotic phylogenies inferred from whole-genome sequence and annotation data”, Biomed. Res. Int., 2013, 409062

[13] McLeod M. P., Qin X., Karpathy S. E., Gioia J., Highlander S. K., Fox G. E., McNeill T. Z., Jiang H., Muzny D., Jacob L. S., Hawes A. C., Sodergren E., Gill R., Hume J., Morgan M., Fan G., Amin A. G., Gibbs R. A., Hong C., Yu X. J., Walker D. H., Weinstock G. M., “Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae”, J. Bacteriol., 186 (2004), 5842–5855 | DOI

[14] Ogata H., Audic S., Renesto-Audiffren P., Fournier P. E., Barbe V., Samson D., Roux V., Cossart P., Weissenbach J., Claverie J. M., Raoult D., “Mechanisms of evolution in Rickettsia conorii and R. prowazekii”, Science, 293 (2001), 2093–2098 | DOI

[15] Nair A. S. S., Mahalakshmi T., “Visualization of genomic data using inter-nucleotide distance signals”, Proceedings of IEEE Genomic Signal Processing (Bucharest, 2005)

[16] Afreixo V., Bastos C. A. C., Pinho A. J., Garcia S. P., Ferreira P. J. S. G., “Genome analysis with inter-nucleotide distances”, Bioinformatics, 25:23 (2009), 3064–3070 | DOI

[17] Mazur M., Kachestvennaya teoriya informatsii, Mir, M., 1974, 240 pp.

[18] Gumenyuk A. S., Pozdnichenko N. N., Rodionov I. N., Shpynov S. N., “O sredstvakh formalnogo analiza stroya nukleotidnykh tsepei”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 373–397 | DOI

[19] Shpynov S., Pozdnichenko N., Gumenuk A., “Approach for classification and taxonomy within family Rickettsiaceae based on the Formal Order Analysis”, Microbes and Infection, 17:11, 839–844

[20] Ignatovich V. F., “Antigennye svyazi rikketsii Provacheka i rikketsii Kanada, ustanovlennye pri izuchenii syvorotok bolnykh boleznyu Brillya”, Zhurnal gigieny, epidemiologii, mikrobiologii i immunologii, 21:1 (1977), 48–52

[21] Raoult D., Roux V., “Rickettsioses as paradigms of new or emerging infectious diseases”, Clin. Microbiol. Rev., 10:4 (1997), 694–719

[22] Socolovschi C., Pages F., Ndiath M. O., Ratmanov P., Raoult D., “Rickettsia species in African Anopheles mosquitoes”, PLoS One, 7:10 (2012), e48254 | DOI

[23] Ishikura M., Ando S., Shinagawa Y., Matsuura K., Hasegawa S., Nakayama T., Fujita H., Watanabe M., “Phylogenetic analysis of spotted fever group rickettsiae based on gltA, 17-kDa, and rOmpA genes amplified by nested PCR from ticks in Japan”, Microbiol. Immunol., 47 (2003), 823–832 | DOI

[24] Choi Y. J., Lee E. M., Park J. M., Lee K. M., Han S. H., Kim J. K., Lee S. H., Song H. J., Choi M. S., Kim I. S., Park K. H., Jang W. J., “Molecular detection of various rickettsiae in mites (acari: trombiculidae) in southern Jeolla Province, Korea”, Microbiol. Immunol., 51 (2007), 307–312 | DOI

[25] Oliveira K. A., Oliveira L. S., Dias C. C., Silva A. Jr., Almeida M. R., Almada G., Bouyer D. H., Galvao M. A., Mafra C., “Molecular identification of Rickettsia felis in ticks and fleas from an endemic area for Brazilian Spotted Fever”, Mem. Inst. Oswaldo. Cruz., 103:2 (2008), 191–194 | DOI

[26] Abarca K., López J., Acosta-Jamett G., Martínez-Valdebenito C., “Rickettsia felis in Rhipicephalus sanguineus from two distant Chilean cities”, Vector Borne Zoonotic Dis., 13:8 (2013), 607–609 | DOI

[27] Soares H. S., Barbieri A. R., Martins T. F., Minervino A. H., de Lima J. T., Marcili A., Gennari S. M., Labruna M. B., “Ticks and rickettsial infection in the wildlife of two regions of the Brazilian Amazon”, Exp. Appl. Acarol., 65:1 (2015), 125–140 | DOI

[28] Mediannikov O., Aubadie-Ladrix M., Raoult D., “Candidatus ‘Rickettsia senegalensis’ in cat fleas in Senegal”, New Microbe and New Infect., 3 (2015), 24–28 | DOI

[29] Jiang J., Maina A. N., Knobel D. L., Cleaveland S., Laudisoit A., Wamburu K., “Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitats, Asembo, Kenya”, Vector Borne Zoonotic Dis., 13:8 (2013), 550e8 | DOI

[30] Simser J. A., Rahman M. S., Dreher-Lesnick S. M., Azad A. F., “A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility”, Mol. Microbiol., 58:1 (2005), 71–79 | DOI

[31] Felsheim R. F., Kurtti T. J., Munderloh U. G., “Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors”, PLoS One, 21:4(12) (2009), e8361 | DOI

[32] Jado I., Oteo J. A., Aldámiz M., Gil H., Escudero R., Ibarra V., Portu J., Portillo A., Lezaun M. J., García-Amil C., Rodríguez-Moreno I., Anda P., “Rickettsia monacensis and human disease”, Spain. Emerg. Infect. Dis., 13:9 (2007), 1405–1407 | DOI

[33] Winkler H. L., Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche, Verlag Fischer, Jena, 1920

[34] Lederberg J., McCraw A. T., “‘Ome sweet’omics — a genealogical treasury of words”, Scientist, 15:7 (2001), 8

[35] Merhej V., Raoult D., “Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin”, Front. Cell. Infect. Microbiol., 28:2 (2012), 113