Bacterial nucleoid protein Dps binds structured RNA molecules
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 311-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

Architectural protein Dps of the bacterial nucleoid employs side groups of lysines at its N-terminal modules for interacting with the sugar-phosphate backbone of the DNA. Electrostatic nature of interaction assumes the potential ability of Dps to bind with any nucleotide sequence including RNA. The available data also indicate that Dps exhibits enhanced affinity to branched DNA structures. In RNA molecules such structures are formed more frequently than in DNA. Hence, the aim of this investigation was studying the ability of purified Dps immobilized on acrylate spheres to bind with short RNAs isolated from bacterial cells. It appeared that transport and small regulatory RNAs forming stable secondary structures are preferential targets for such interaction. Among RNAs identified in complexes with Dps 8 transcripts corresponded to intergenic spaces, which might indicate the presence of novel genes. Moreover, products 9-13 nucleotides long belonging to small untranslated RNAs SdsR and RyeA and transcribed from both strands of the same locus were registered. Since the number of longer transcripts from this region was at least five-fold lower, it can be presumed that two counter-synthesized products form a partly complementary duplex subjected to controlled processing. The selectivity of Dps to these molecules, as well as to other structured RNAs, indicates a possibility of its involvement not only in bacterial genome condensation, but also in maintaining the functional state of the transcriptome.
@article{MBB_2016_11_2_a5,
     author = {A. A. Bykov and K. S. Shavkunov and V. V. Panyukov and O. N. Ozoline},
     title = {Bacterial nucleoid protein {Dps} binds structured {RNA} molecules},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {311--322},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a5/}
}
TY  - JOUR
AU  - A. A. Bykov
AU  - K. S. Shavkunov
AU  - V. V. Panyukov
AU  - O. N. Ozoline
TI  - Bacterial nucleoid protein Dps binds structured RNA molecules
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 311
EP  - 322
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a5/
LA  - ru
ID  - MBB_2016_11_2_a5
ER  - 
%0 Journal Article
%A A. A. Bykov
%A K. S. Shavkunov
%A V. V. Panyukov
%A O. N. Ozoline
%T Bacterial nucleoid protein Dps binds structured RNA molecules
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 311-322
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a5/
%G ru
%F MBB_2016_11_2_a5
A. A. Bykov; K. S. Shavkunov; V. V. Panyukov; O. N. Ozoline. Bacterial nucleoid protein Dps binds structured RNA molecules. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 311-322. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a5/

[1] Dorman C. J., “Function of nucleoid-associated proteins in chromosome structuring and transcriptional regulation”, J. Mol. Microbiol. Biotechnol., 24 (2014), 316–331 | DOI

[2] Azam T. A., Ishihama A., “Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity”, J. Biol. Chem., 274 (1999), 33105–33113 | DOI

[3] Azam T. A., Iwata A., Nishimura A., Ueda S., Ishihama A., “Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid”, J. Bacteriol., 181 (1999), 6361–6370

[4] Azam T. A., Hiraga S., Ishihama A., “Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid”, Genes to Cells, 5 (2000), 613–626 | DOI

[5] Grainger D. C., Hurd D., Goldberg M. D., Busby S. J. W., “Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome”, Nucleic Acids Research, 34 (2006), 4642–4652 | DOI

[6] Kahramanoglou C., Seshasayee A. S. N., Prieto A. I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G. M., Luscombe N. M., “Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli”, Nucleic Acids Research, 39 (2011), 2073–2091 | DOI

[7] Vora T., Hottes A. K., Tavazoie S., “Protein occupancy landscape of a bacterial genome”, Molecular Cell, 35 (2009), 247–253 | DOI

[8] Prieto A. I., Kahramanoglou C., Ali R. M., Fraser G. M., Seshasayee A. S. N., Luscombe N. M., “Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12”, Nucleic Acids Research, 40 (2012), 3524–3537 | DOI

[9] Dorman C. J., “H-NS, the genome sentinel”, Nat. Rev. Microbiol., 5 (2007), 157–161 | DOI

[10] Wang W., Li G.-W., Chen C., Xie X. S., Zhuang X., “Chromosome organization by a nucleoid-associated protein in live bacteria”, Science, 333 (2011), 1445–1449 | DOI

[11] Almirón M., Link A. J., Furlong D., Kolter R., “A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli”, Genes Dev., 6 (1992), 2646–2654 | DOI

[12] Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M., “The crystal structure of Dps, a ferritin homolog that binds and protects DNA”, Nat. Struct. Biol., 5 (1998), 294–303 | DOI

[13] Ceci P., Cellai S., Falvo E., Rivetti C., Rossi G. L., Chiancone E., “DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus”, Nucleic Acids Research, 32 (2004), 5935–5944 | DOI

[14] Melekhov V. V., Shvyreva U. S., Timchenko A. A., Tutukina M. N., Preobrazhenskaya E. V., Burkova D. V., Artiukhov V. G., Ozoline O. N., Antipov S. S., “Modes of Escherichia coli Dps interaction with DNA as revealed by atomic force microscopy”, PLoS ONE, 10 (2015) | DOI

[15] Ghatak P., Karmakar S. K., Kasetty D. C., “Unveiling the role of Dps in the organization of mycobacterial nucleoid”, PLoS ONE, 6:1 (2011) | DOI | MR

[16] Sambrook J., Fritsch E. F., Maniatis T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York, 1989

[17] Pokusaeva V. O., Antipov S. S., Shvyreva U. S., Tutukina M. N., Ozolin O. N., “Superproduktsiya, vydelenie i ochistka funktsionalno aktivnogo bakterioferritina Dps E. coli”, Sorbtsionnye i khromatograficheskie protsessy, 12 (2012), 1011–1017

[18] Oppermann M., “Anion exchange chromatography for purification of monoclonal IgG antibodies”, Monoclonal antibodies, eds. Peters J. P., Baumgarten H., Springer, Heidelberg, 1992, 271–275

[19] Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., “The sequence Alignment/Map format and SAMtools”, Bioinformatics, 25:16 (2009), 2078–2079 | DOI

[20] Marcel M., “Cutadapt removes adapter sequences from high-throughput sequencing reads”, EMBnet.Journal, 17:1 (2011), 10–12 | DOI

[21] FastX-Toolkit, (accessed 23.11.16) http://www.hannolab.cshl.edu/fastx_toolkit/

[22] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozoline O. N., “Mixed promoter islands as genomic regions with specific structural and functional properties”, Mathem. Biol. Bioinf., 8 (2013), 432–448 | DOI

[23] Statistical Algorithms Description Document, (accessed 23.11.16) http://media.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

[24] Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J., “DNAPlotter: circular and linear interactive genome visualization”, Bioinformatics, 25:1 (2009), 119–120 | DOI

[25] Aleksic J., Carl S., Fryel M., Beyond library size: a field guide to NGS normalization, bioRxiv, 2014 | DOI

[26] Bae W., Xia B., Inouye M., Severinov K., “Escherichia coli CspA-family RNA chaperones are transcription antiterminators”, Proc. Natl. Acad. Sci., 9714 (2000), 7784–7789 | DOI

[27] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons from genome-scale promoter mapping”, Nucleic Acids Res., 37:15 (2009), 4919–4931 | DOI

[28] Mathews D. H., “RNA secondary structure analysis using RNAstructure”, Current Protocols in Bioinformatics, 46 (2014) | DOI

[29] Wassarman K. M., Repoila F., Rosenow C., Storz G., Gottesman S., “Identification of novel small RNAs using comparative genomics and microarrays”, Genes Dev., 15:13 (2001), 1637–1651 | DOI

[30] Vogel J., Bartels V., Tang T. H., Churakov G., Slagter-Jäger J. G., Huttenhofer A., Wagner E. G., “RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria”, Nucleic Acids Res., 31:22 (2003), 6435–6443 | DOI

[31] Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G., Margalit H., Altuvia S., “Novel small RNA-encoding genes in the intergenic regions of Escherichia coli”, Curr. Biol., 11:12 (2001), 941–950 | DOI

[32] Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S. G., Wachtel E. J., Arad T., “Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection”, EMBO, 20 (2001), 1184–1191 | DOI

[33] Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T., Chiancone E., Emilia C., Chasteen D. N., “Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli”, J. Biol. Chem., 277 (2002), 27689–27696 | DOI