Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 214-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer an approach to the inter-channel connectivity analysis of EEG using correlation ratios which can objectively estimate characteristics of interactions in all their models. It is shown that the values of the correlation ratios can serve as an indicator of nonlinear correlation. The ability to analyze multiple interactions is shown on the basis of the proposed correlation ratio matrix. The concept of dominant channels is introduced. Algorithms and analysis software are discussed.
@article{MBB_2016_11_2_a19,
     author = {R. I. Ivanovskiy and M. A. Novozhilov},
     title = {Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {214--224},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a19/}
}
TY  - JOUR
AU  - R. I. Ivanovskiy
AU  - M. A. Novozhilov
TI  - Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 214
EP  - 224
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a19/
LA  - ru
ID  - MBB_2016_11_2_a19
ER  - 
%0 Journal Article
%A R. I. Ivanovskiy
%A M. A. Novozhilov
%T Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 214-224
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a19/
%G ru
%F MBB_2016_11_2_a19
R. I. Ivanovskiy; M. A. Novozhilov. Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 214-224. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a19/

[1] Vega-Zelaya L., Garnés-Camarena O., Sanz-García A., Ortega G. J., Pastor J., Mathematical Foundations of Quantified Electroencephalography, 2016

[2] Cover K. S., Stam C. J., van Dijk B. W., “Detection of very high correlation in the alpha band between temporal regions of the human brain using MEG”, Neuroimage, 22:4 (2004), 1432–1437 | DOI

[3] Bartolomei F., Bosma I., Klein M., Baayen J. C., Reijneveld J. C., Postma T. J., Heimans J. J., van Dijk B. W., de Munck J. C., de Jongh A., “How do brain tumors alter functional connectivity? A magnetoencephalography study”, Annals of neurology, 59:1 (2006), 128–138 | DOI

[4] Roosendaal S. D., Hulst H. E., Vrenken H., Feenstra H. E., Castelijns J. A., Pouwels P. J., Barkhof F., Geurts J. J., “Structural and Functional Hippocampal Changes in Multiple Sclerosis Patients with Intact Memory Function 1”, Radiology, 255:2 (2010), 595–604 | DOI

[5] Angelopoulos E., Koutsoukos E., Maillis A., Papadimitriou G. N., Stefanis C., “Cortical interactions during the experience of auditory verbal hallucinations”, The Journal of neuropsychiatry and clinical neurosciences, 23:3 (2011), 287–293 | DOI

[6] Kalauzi A., Vuckovic A., Bojić T., “EEG alpha phase shifts during transition from wakefulness to drowsiness”, International journal of psychophysiology, 86:3 (2012), 195–205 | DOI

[7] Ramakrishnan A. G., Satyanarayana J. V., “Reconstruction of EEG from limited channel acquisition using estimated signal correlation”, Biomedical Signal Processing and Control, 27 (2016), 164–173 | DOI

[8] Alonso J. F., Mananas M. A., Romero S., Hoyer D., Riba J., Barbanoj M. J., “Drug effect on EEG connectivity assessed by linear and nonlinear couplings”, Human brain mapping, 31:3 (2010), 487–497 | DOI

[9] Cruz A. V., Mallet N., Magill P. J., Brown P., Averbeck B. B., “Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus”, Journal of neurophysiology, 106:4 (2011), 2012–2023 | DOI

[10] Ventouras E. C., Margariti A., Chondraki P., Kalatzis I., Economou N. T., Tsekou H., Paparrigopoulos T., Ktonas P., “EEG-based investigation of brain connectivity changes in psychotic patients undergoing the primitive expression form of dance therapy: a methodological pilot study”, Cognitive neurodynamics, 9:2 (2015), 231–248 | DOI

[11] Bonita J. D., Ambolode L. C. C. II, Rosenberg B. M., Cellucci C. J., Watanabe T. A. A., Rapp P. E., Albano A. M., “Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures”, Cognitive neurodynamics, 8:1 (2014), 1–15 | DOI

[12] Lynall M. E., Bassett D. S., Kerwin R., McKenna P. J., Kitzbichler M., Muller U., Bullmore E., “Functional connectivity and brain networks in schizophrenia”, The Journal of Neuroscience, 30:28 (2010), 9477–9487 | DOI

[13] Sakharov V. L., Andreenko A. S., Metody matematicheskoi obrabotki elektroentsefalogramm, Uchebnoe posobie, Anton, Taganrog, 2000, 44 pp.

[14] Amosova N. N., Kuklin B. A., Makarova S. B., Maksimov Yu. D., Mitrofanova N. M., Polischuk V. I., Shevlyakov G. L., Veroyatnostnye razdely matematiki, ed. Maksimov Yu. D., Ivan Fedorov, SPb., 2001, 588 pp.

[15] Jeong J., Kim D. J., Chae J. H., Kim S. Y., Ko H. J., Paik I. H., “Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension”, Medical engineering physics, 20:9 (1998), 669–676 | DOI

[16] Meyer-Lindenberg A., Bauer U., Krieger S., Lis S., Vehmeyer K., Schüler G., Gallhofer B., “The topography of non-linear cortical dynamics at rest, in mental calculation and moving shape perception”, Brain topography, 10:4 (1998), 291–299 | DOI

[17] da Silva F. L., Pijn J. P., Boeijinga P., “Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts”, Brain topography, 2:1–2 (1989), 9–18 | DOI

[18] Wendling F., Bartolomei F., Bellanger J. J., Chauvel P., “Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG”, Clinical neurophysiology, 112:7 (2001), 1201–1218 | DOI

[19] Ansari-Asl K., Senhadji L., Bellanger J. J., Wendling F., “Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals”, Physical Review E, 74:3 (2006), 031916 | DOI | MR

[20] Kalitzin S. N., Parra J., Velis D. N., da Silva F. L., “Quantification of unidirectional nonlinear associations between multidimensional signals”, IEEE transactions on biomedical engineering, 54:3 (2007), 454–461 | DOI

[21] Wendling F., Ansari-Asl K., Bartolomei F., Senhadji L., “From EEG signals to brain connectivity: a model-based evaluation of interdependence measures”, Journal of neuroscience methods, 183:1 (2009), 9–18 | DOI

[22] Ivanovskii R. I., Teoriya veroyatnostei i matematicheskaya statistika. Osnovy, prikladnye aspekty s primerami i zadachami v srede Mathcad, BKhV, SPb., 2008, 528 pp.

[23] MAS. Exponenta.ru (accessed 20.10.2016) http://mas.exponenta.ru/