Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2016_11_2_a18, author = {O. Yu. Nikitin and O. A. Lukyanova and A. S. Kunin}, title = {Analysis of adaptivity and plasticity in the network of homeostatic neurons}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {351--366}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a18/} }
TY - JOUR AU - O. Yu. Nikitin AU - O. A. Lukyanova AU - A. S. Kunin TI - Analysis of adaptivity and plasticity in the network of homeostatic neurons JO - Matematičeskaâ biologiâ i bioinformatika PY - 2016 SP - 351 EP - 366 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a18/ LA - ru ID - MBB_2016_11_2_a18 ER -
%0 Journal Article %A O. Yu. Nikitin %A O. A. Lukyanova %A A. S. Kunin %T Analysis of adaptivity and plasticity in the network of homeostatic neurons %J Matematičeskaâ biologiâ i bioinformatika %D 2016 %P 351-366 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a18/ %G ru %F MBB_2016_11_2_a18
O. Yu. Nikitin; O. A. Lukyanova; A. S. Kunin. Analysis of adaptivity and plasticity in the network of homeostatic neurons. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 351-366. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a18/
[1] McCulloch W. S., Pitts W., “A logical calculus of the ideas immanent in nervous activity”, Bulletin of Mathematical Biophysics, 5:4 (1943), 115–133 | DOI | MR | Zbl
[2] Izhikevich E. M., “Simple model of spiking neurons”, IEEE Trans Neural Netw., 14:6 (2003), 1569–1572 | DOI | MR
[3] FitzHugh R., “Mathematical models of threshold phenomena in the nerve membrane”, Bull. Math. Biophysics, 17 (1955), 257–278 | DOI
[4] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of Physiology, 117:4 (1952), 500–544 | DOI
[5] O'Leary T., Williams A. H., Franci A., Marder E., “Cell types, network homeostasis and pathological compensation from a biologically plausible ion channel expression model”, Neuron., 82:4 (2014), 809–821 | DOI | MR
[6] Proskura A. L., Malakhin I. A., Turnaev I. I., Suslov V. V., Zapara T. A., Ratushnyak A. S., “Mezhmolekulyarnye vzaimodeistviya v funktsionalnykh sistemakh neirona”, Vavilov. zhurn. genet. i selektsii, 17:4/1 (2013), 620–628
[7] Kotaleski J., Blackwell K., “Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches”, Nat. Rev. Neurosci., 11:4 (2010), 239–251 | DOI
[8] Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., Riedmiller M., Playing Atari with Deep Reinforcement Learning, arXiv: (data obrascheniya: 31.07.2016) 1312.5602v1 [cs.LG]
[9] Moren J., Igarashi J., Yoshimoto J., “A full rat-scale model of the basal ganglia and thalamocortical network to reproduce Parkinsonian tremor”, BMC Neuroscience, 16:1 (2015), 64 | DOI
[10] Nikitin O. Yu., Lukyanova O. A., “Issledovanie roli kletochnogo gomeostaza neironov na primere upravleniya obucheniem i adaptatsiei agenta”, Neiroinformatika, 9:1 (2016), 1–26
[11] Fujikawa D. G., “The Role of Excitotoxic Programmed Necrosis in Acute Brain Injury”, Computational and Structural Biotechnology Journal, 13 (2015), 212–221 | DOI
[12] Grechenko T. N., “Conditioned inhibition of action potential generation in isolated Helix pomatia neurons”, Neurosci. Behav. Physiol., 20:5 (1990), 452–459 | DOI
[13] Zapara G. A., Ratushnyak A. S., Shtark M. B., “Local changes in transmembrane ionic currents during plastic reorganizations of electrogenesis of isolated neurons of the pond snail”, Neuroscience and Behavioral Physiology, 19:3 (1989), 224–229 | DOI
[14] Tsitolovskii L. E., “Integrativnaya deyatelnost nervnykh kletok pri zapisi sleda pamyati”, Uspekhi fiziol. nauk, 17:2 (1986), 83–103
[15] Lin Y., Skeberdis V. A., Francesconi A., Bennett M. V., Zukin R. S., “Postsynaptic density protein-95 regulates NMDA channel gating and surface expression”, J. Neurosci., 24:45 (2004), 10138–10148 | DOI
[16] Saakyan Yu. Z., Rossokhin A. V., Tsitolovskii L. E., “Matematicheskaya model plastichnosti neirona”, Biofizika, 38:3 (1993), 471–477
[17] Lakhman K. V., Neironnye seti, osnovannye na gomeostaticheskikh neironakh: samoorganizatsiya i tselenapravlennoe povedenie, , 2009 (data obrascheniya: 31.07.2016) http://geektimes.ru/post/101926/
[18] Dong X. X., Wang Y., Qin Z. H., “Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases”, Acta Pharmacol. Sin., 30:4 (2009), 379–387 | DOI
[19] Keller D. X., Franks K. M., Bartol T. M. Jr., Sejnowski T. J., “Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines”, PLoS One, 3:4 (2008), 2045 | DOI | MR
[20] Blanton M. G., Kriegstein A. R., “Spontaneous action potentials, activity, and synaptic currents in the embryonic turtle cerebral cortex”, Journal of Neuroscience, 11:12 (1991), 3907–3923
[21] Raman I. M., Bean B. P., “Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons”, J. Neurosci., 19 (1999), 1663–1674
[22] Guinamard R., Delpy E., Denizot J. P., Jacquin T. D., “Synapse formation and spontaneous activity in rat brainstem neurons in primary culture”, Developmental Brain Research, 117:1 (1999), 31–38 | DOI
[23] Hebb D. O., The Organization of Behavior, Wiley Sons, New York, 1949, 378 pp.
[24] Gerstner W., Kempter R., van Hemmen J. L., Wagner H., “A neuronal learning rule for sub-millisecond temporal coding”, Nature, 386:6595 (1996), 76–78 | DOI
[25] Degterev A. A., Burtsev M. S., “Issledovanie spontannoi aktivnosti v modeli neironalnoi kultury s dolgovremennoi plastichnostyu”, Matem. biologiya i bioinform., 10:1 (2015), 234–244 | DOI
[26] Henley J. M., Wilkinson K. A., “AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging”, Dialogues Clin. Neurosci., 15:1 (2013), 11–27
[27] Hanus C., Kochen L., Tom Dieck S., Racine V., Sibarita J.-B., Schuman E. M., Ehlers M. D., “Synaptic control of secretory trafficking in dendrites”, Cell Reports, 7:6 (2014), 1771–1778 | DOI