Diffraction images classification for biological particles with different symmetry types in coherent X-ray diffraction imaging experiments
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 299-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

About 1% of diffraction images produced in coherent X-ray diffraction imaging experiments originate from a single particle of interest and only those images are suitable for structure reconstruction. Other images contain contributions from multiple particles, water or some contaminant. Selection of single particle images is required. A new classification method that is based on cross-correlation analysis were developed. The method was successfully applied to the experimental data, that contain diffraction images of the PBCV-1 virus and T4 bacteriophage. In this article we present classification results for diffraction images of seven biological particles with different symmetry. The results confirm the applicability of the proposed method for correct classification of diffraction images corresponding to different molecules. We also studied influence of particle symmetry type and volume of learning dataset to classification quality.
@article{MBB_2016_11_2_a16,
     author = {S. A. Bobkov and A. B. Teslyuk and V. A. Ilyin and I. A. Vartanyants},
     title = {Diffraction images classification for biological particles with different symmetry types in coherent {X-ray} diffraction imaging experiments},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {299--310},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a16/}
}
TY  - JOUR
AU  - S. A. Bobkov
AU  - A. B. Teslyuk
AU  - V. A. Ilyin
AU  - I. A. Vartanyants
TI  - Diffraction images classification for biological particles with different symmetry types in coherent X-ray diffraction imaging experiments
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 299
EP  - 310
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a16/
LA  - ru
ID  - MBB_2016_11_2_a16
ER  - 
%0 Journal Article
%A S. A. Bobkov
%A A. B. Teslyuk
%A V. A. Ilyin
%A I. A. Vartanyants
%T Diffraction images classification for biological particles with different symmetry types in coherent X-ray diffraction imaging experiments
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 299-310
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a16/
%G ru
%F MBB_2016_11_2_a16
S. A. Bobkov; A. B. Teslyuk; V. A. Ilyin; I. A. Vartanyants. Diffraction images classification for biological particles with different symmetry types in coherent X-ray diffraction imaging experiments. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 299-310. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a16/

[1] Schmahl G., “X-ray microscopy”, Nuclear Instruments and Methods in Physics Research, 208:1 (1983), 361–365 | DOI

[2] Sayre D., Howells M., Kirz J., Rarback H., X-ray microscopy II, Springer series in optical sciences, 56, no. 272, 1988 | DOI

[3] Kirz J., Jacobsen C., Howells M., “Soft x-ray microscopes and their biological applications”, Quarterly reviews of biophysics, 28:1 (1995), 33–130 | DOI

[4] Aoki S., Kikuta S., “X-ray holographic microscopy”, Japanese Journal of Applied Physics, 13:9 (1974), 1385 | DOI

[5] Eichert D., Gregoratti L., Kaulich B., Marcello A., Melpignano P., Quaroni L., Kiskinova M., “Imaging with spectroscopic micro-analysis using synchrotron radiation”, Analytical and bioanalytical chemistry, 389:4 (2007), 1121–1132 | DOI

[6] Giacovazzo C., Monaco H. L., Artioli G., Vitebro D., Ferraris G., Gilli G., Zanotti G., Catti M., Fundamentals of crystallography, International Union of Crystallography Monographs on Crystallography, 2002

[7] Henderson R., “The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules”, Quarterly Reviews of Biophysics, 28 (1995), 171–193 | DOI

[8] Howells M. R., Beets T., Chapman H. N., Cui C., Holton J. M., Jacobsen C. J., Kirz J., Lima E., Marchesini S., Miao H. et al., “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy”, Journal of Electron Spectroscopy and Related Phenomena, 170:4 (2009)

[9] Miao J., Ishikawa T., Johnson B., Anderson E. H., Lai B., Hodgson K., “High resolution 3d x-ray diffraction microscopy”, Physical review letters, 89:8 (2002), 088303 | DOI

[10] Chapman H. N., Nugent K. A., “Coherent lensless x-ray imaging”, Nature Photonics, 4:12 (2010), 833–839 | DOI

[11] Chapman H. N., Barty A., Bogan M. J., Boutet S., Frank M., Hau-Riege S. P., Marchesini S., Woods B. W., Bajt S., Benner W. H. et al., “Femtosecond diffractive imaging with a soft-x-ray free-electron laser”, Nat Phys., 2:12 (2006), 839–843 | DOI

[12] Gaffney K. J., Chapman H. N., “Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering”, Science, 316:1444 (2007)

[13] Seibert M. M., Ekeberg T., Maia F., Svenda M., Andreasson J., Jönsson O., Odić D., Iwan B., Rocker A., Westphal D. et al., “Single mimivirus particles intercepted and imaged with an x-ray laser”, Nature, 470:7332 (2011), 78–81 | DOI

[14] Mancuso A. P., Yefanov O. M., Vartanyants I. A., “Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities”, J. Biotechnology, 149 (2010), 229 | DOI

[15] Robinson I. K., Vartanyants I. A., Williams G. J., Pfeifer M. A., Pitney J. A., “Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction”, Physical Review Letters, 87:19 (2001), 195505 | DOI

[16] Vartanyants I. A., Robinson I. K., “Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction”, Journal of Physics: Condensed Matter, 13:47 (2001), 10593 | DOI

[17] Vartanyants I. A., Robinson I. K., “Origins of decoherence in coherent x-ray diffraction experiments”, Optics communications, 222:1 (2003), 29–50 | DOI

[18] Williams G. J., Quiney H. M., Peele A. G., Nugent K. A., “Coherent diffractive imaging and partial coherence”, Physical Review B, 75:10 (2007), 104102 | DOI

[19] Neutze R., Wouts R., van der Spoel D., Weckert E., Hajdu J., “Potential for biomolecular imaging with femtosecond x-ray pulses”, Nature, 406:6797 (2000), 752–757 | DOI

[20] Miao J., Sayre D., Chapman H. N., “Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects”, Journal of the Optical Society of America A, 15:6 (1998), 1662–1669 | DOI

[21] Fienup J. R., “Reconstruction of an object from the modulus of its fourier transform”, Optics letters, 3:1 (1978), 27–29 | DOI

[22] Fienup J. R., “Phase retrieval algorithms: a comparison”, Appl. Opt., 21 (1982), 15 | DOI

[23] Chen C., Miao J., Wang C. W., Lee T. K., “Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method”, Physical Review B, 76:6 (2007), 064113 | DOI

[24] Marchesini S., He H., Chapman H. N., Hau-Riege S. P., Noy A., Howells M. R., Weierstall U., Spence J. C. H., “X-ray image reconstruction from a diffraction pattern alone”, Physical Review B, 68:14 (2003), 140101 | DOI

[25] Shen Q., Bazarov I., Thibault P., “Diffractive imaging of nonperiodic materials with future coherent x-ray sources”, Journal of synchrotron radiation, 11:5 (2004), 432–438 | DOI

[26] Bergh M., Huldt G., Timneanu N., Maia F., Hajdu J., “Feasibility of imaging living cells at subnanometer resolutions by ultrafast x-ray diffraction”, Quarterly reviews of biophysics, 41:3–4 (2008), 181–204 | DOI

[27] Huang X., Nelson J., Kirz J., Lima E., Marchesini S., Miao H., Neiman A. M., Shapiro D., Steinbrener J., Stewart A. et al., “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell”, Physical review letters, 103:19 (2009), 198101 | DOI

[28] Miao J., Hodgson K., Ishikawa T., Larabell C. A., LeGros M. A., Nishino Y., “Imaging whole escherichia coli bacteria by using single-particle x-ray diffraction”, Proceedings of the National Academy of Sciences, 100:1 (2003), 110–112 | DOI

[29] Shapiro D., Thibault P., Beetz T., Elser V., Howells M., Jacobsen C., Kirz J., Lima E., Miao H., Neiman A. M. et al., “Biological imaging by soft x-ray diffraction microscopy”, Proceedings of the National Academy of Sciences, 102:43 (2005), 15343–15346 | DOI

[30] Song C., Jiang H., Mancuso A., Amirbekian B., Peng L., Sun R., Shah S. S., Zhou Z. H., Ishikawa T., Miao J., “Quantitative imaging of single, unstained viruses with coherent x rays”, Physical review letters, 101:15 (2008), 158101 | DOI

[31] Nishino Y., Takahashi Y., Imamoto N., Ishikawa T., Maeshima K., “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction”, Physical review letters, 102:1 (2009), 018101 | DOI

[32] Huang X., Miao H., Steinbrener J., Nelson J., Shapiro D., Stewart A., Turner J., Jacobsen N., “Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy”, Opt. Express, 17:16 (2009), 13541–13553 | DOI

[33] Bobkov S. A., Teslyuk A. B., Kurta R. P., Gorobtsov O. Y., Yefanov O. M., Ilyin V. A., Senin R. A., Vartanyants I. A., “Sorting algorithms for single-particle imaging experiments at x-ray free-electron lasers”, Journal of Synchrotron Radiation, 22 (2015), 1345–1352 | DOI

[34] Cortes C., Vapnik V., “Support-vector networks”, Machine Learning, 20:3 (1995), 273–297 | Zbl

[35] Altarelli M., Kurta R. P., Vartanyants I. A., “X-ray cross-correlation analysis and local symmetries of disordered systems: General theory”, Physical Review B, 82 (2010), 104207 | DOI

[36] Kurta R. P., Altarelli M., Weckert E., Vartanyants I. A., “X-ray cross-correlation analysis applied to disordered two-dimensional systems”, Physical Review B, 85:18 (2012), 184204 | DOI

[37] Kurta R. P., Altarelli M., Vartanyants I. A., “X-ray cross-correlation analysis of disordered ensembles of particles: Potentials and limitations”, Adv. Cond. Matt. Phys., 2013 (2013), 959835

[38] Kurta R. P., Dronyak R., Altarelli M., Weckert E., Vartanyants I. A., “Solution of the phase problem for coherent scattering from a disordered system of identical particles”, New journal of physics, 15:1 (2013), 013059 | DOI

[39] Van Molle I., Thomann A., Buckley D. L., So E. C., Lang S., Crews C. M., Ciulli A., “Dissecting fragment-based lead discovery at the von hippel-lindau protein: hypoxia inducible factor 1$\alpha$ protein-protein interface”, Chemistry biology, 19:10 (2012), 1300–1312 | DOI

[40] Förster A., Masters E. I., Whitby F. G., Robinson H., Hill C. P., “The 1.9 å structure of a proteasome-11s activator complex and implications for proteasome-pan/pa700 interactions”, Molecular cell, 18:5 (2005), 589–599 | DOI | MR

[41] Bieger B., Essen L., Oesterhelt D., “Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from halobacterium salinarum”, Structure, 11:4 (2003), 375–385 | DOI

[42] Kim K. K., Kim R., Kim S., “Crystal structure of a small heat-shock protein”, Nature, 394:6693 (1998), 595–599 | DOI

[43] Marvin D. A., “Model-building studies of inovirus: genetic variations on a geometric theme”, International journal of biological macromolecules, 12:2 (1990), 125–138 | DOI

[44] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The protein data bank”, Nucleic acids research, 28:1 (2000), 235–242 | DOI | MR

[45] Bobkov S. A., Teslyuk A. B., Ilyin V. A., “Adaptation of spsim for simulation of diffraction images in xfel experiments”, Procedia Computer Science, 66 (2015), 158–165 | DOI