The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 233-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mechanism of forming of low-frequency oscillations in the human cardiovascular system is a burning issue today. The current paper considers a hypothesis of hydrodynamic nature of these oscillations, which are formed without the involvement of autonomous control of the cardiovascular system from the autonomic nervous system. The developed reduced hydrodynamic model was used to study the system response on additive periodic perturbation of wide-ranged frequencies that affects the performance of the heart pump, as well as the role of hydrodynamic parameters of the cardiovascular bed in this process. It was shown that low-frequency perturbation of pump wall rigidity forms low-frequency oscillations in the arterial part of the cardiovascular flow without autonomous control, with the maximum amplitude observed at frequency close to 0.1 Hz.
@article{MBB_2016_11_2_a13,
     author = {A. A. Grinevich and A. V. Tankanag and N. K. Chemeris},
     title = {The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {233--244},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/}
}
TY  - JOUR
AU  - A. A. Grinevich
AU  - A. V. Tankanag
AU  - N. K. Chemeris
TI  - The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 233
EP  - 244
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/
LA  - en
ID  - MBB_2016_11_2_a13
ER  - 
%0 Journal Article
%A A. A. Grinevich
%A A. V. Tankanag
%A N. K. Chemeris
%T The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 233-244
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/
%G en
%F MBB_2016_11_2_a13
A. A. Grinevich; A. V. Tankanag; N. K. Chemeris. The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/

[1] Claude J., “The enigma of Mayer waves: facts and models”, Cardiovascular Research, 70 (2006), 12–21 | DOI

[2] Cohen M. A., Taylor J. A., “Short-term cardiovascular oscillations in man: measuring and modeling the physiologies”, J. Physiol., 542 (2002), 669–683 | DOI

[3] Song H.-S., Lehrer P. M., “The effects of specific respiratory rates on heart rate and heart rate variability”, App. Psychophysiology and Biofeedback, 28 (2003), 13–23 | DOI

[4] Lehrer P. M., Vaschillo E., Vaschillo B., Lu S. E., Scardella A., Siddique M., Habib R. H., “Biofeedback treatment for asthma”, Chest, 126 (2004), 352–61 | DOI

[5] Yucha C. B., Tsai P. S., Calderon K. S., Tian L., Biofeedback-assisted relaxation training for essential hypertension: who is most likely to benefit?, J. Cardiovasc. Nurs., 20 (2005), 198–205 | DOI

[6] Karavidas M. K., Lehrer P. M., Vaschillo E., Vaschillo B., Marin H., Buyske S., Malinovsky I., Radvanski D., Hassett A., “Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression”, Appl. Psychophysiol. Biofeedback, 32 (2007), 19–30 | DOI

[7] Hassett A. L., Radvanski D. C., Vaschillo E. G., Vaschillo B., Sigal L. H., Karavidas M. K., Buyske S., Lehrer P. M., “A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia”, Appl. Psychophysiol Biofeedback, 32 (2007), 1–10 | DOI

[8] Horsman H. M., Tzeng Y. C., Galletly D. C., Peebles K. C., “The repeated sit-to-stand maneuver is a superior method for cardiac baroreflex assessment: a comparison with the modified Oxford method and Valsalva maneuver”, Am. J. Physiol. Regul. Integr. Comp. Physiol., 307 (2014), R1345–52 | DOI

[9] Lehrer P. M., Gevirtz R., Heart rate variability biofeedback: how and why does it work?, Front. Psychol., 5 (2014), 756 | DOI

[10] Bernardi L. C., Porta A., Gabutti L., Spicuzza L., Sleight P., “Modulatory effects of respiration”, Auton. Neurosci. Basic and Clin., 90 (2001), 47–56 | DOI

[11] Ferrario M., Moissl U., Garzotto F., Cruz D. N., Tetta C., Signorini M. G., Ronco C., Grassmann A., Cerutti S., Guzzetti S., “The forgotten role of central volume in low frequency oscillations of heart rate variability”, PLoS ONE, 10 (2015), e0120167 | DOI

[12] Seydnejad S. R., Kitney R. I., “Modeling of Mayer waves generation mechanisms”, IEEE Eng. Med. Biol. Mag., 20 (2001), 92–100 | DOI

[13] Ursino M., Magosso E., “Role of short term cardiovascular regulation in heart rate variability: a modeling study”, Am. J. Physiol. Heart Circ. Physiol., 284 (2003), H1479–H1493 | DOI

[14] Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y., “Model for complex heart rate dynamics in health and diseases”, Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 72 (2005), 041904 | DOI

[15] Yildiz M., Ider Y. Z., “Model based and experimental investigation of respiratory effect on the HRV power spectrum”, Physiol. Meas., 27 (2006), 973–988 | DOI

[16] Grinevich A. A., Tankanag A. V., Safronova V. G., Chemeris N. K., “Role of additive stochastic modulation of the heart activity in the formation of 0.1 Hz blood flow oscillations in the human cardiovascular system”, Doklady Biological Sciences, 468 (2016), 106–111 | DOI

[17] Tsanas A., Goulermas J. Y., Vartela V., Tsiapras D., Theodorakis G., Fisher A. C., Sfirakis P., “The Windkessel model revisited: a qualitative analysis of the circulatory system”, Medical Engineering Physics, 31 (2009), 581–588 | DOI

[18] Tankanag A. V., Chemeris N. K., “Application of adaptive wavelet transform for analysis of blood flow oscillations in the human skin”, Phys. Med. Biol., 53 (2008), 5967–5976 | DOI

[19] MEDUNIVER. com: Human Physiology, (In Russ.) (accessed 03 Jun 2016) http://meduniver.com/Medical/Physiology/356.html

[20] Grinevich A. A., Tankanag A. V., Chemeris N. K., “Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1 Hz”, Math. Biol. Bioinf., 9 (2014), 341–358 | DOI