Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2016_11_2_a13, author = {A. A. Grinevich and A. V. Tankanag and N. K. Chemeris}, title = {The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {233--244}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/} }
TY - JOUR AU - A. A. Grinevich AU - A. V. Tankanag AU - N. K. Chemeris TI - The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human JO - Matematičeskaâ biologiâ i bioinformatika PY - 2016 SP - 233 EP - 244 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/ LA - en ID - MBB_2016_11_2_a13 ER -
%0 Journal Article %A A. A. Grinevich %A A. V. Tankanag %A N. K. Chemeris %T The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human %J Matematičeskaâ biologiâ i bioinformatika %D 2016 %P 233-244 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/ %G en %F MBB_2016_11_2_a13
A. A. Grinevich; A. V. Tankanag; N. K. Chemeris. The role of hydrodynamic parameters in the forming of low-frequency oscillations in arterial blood pressure in human. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a13/
[1] Claude J., “The enigma of Mayer waves: facts and models”, Cardiovascular Research, 70 (2006), 12–21 | DOI
[2] Cohen M. A., Taylor J. A., “Short-term cardiovascular oscillations in man: measuring and modeling the physiologies”, J. Physiol., 542 (2002), 669–683 | DOI
[3] Song H.-S., Lehrer P. M., “The effects of specific respiratory rates on heart rate and heart rate variability”, App. Psychophysiology and Biofeedback, 28 (2003), 13–23 | DOI
[4] Lehrer P. M., Vaschillo E., Vaschillo B., Lu S. E., Scardella A., Siddique M., Habib R. H., “Biofeedback treatment for asthma”, Chest, 126 (2004), 352–61 | DOI
[5] Yucha C. B., Tsai P. S., Calderon K. S., Tian L., Biofeedback-assisted relaxation training for essential hypertension: who is most likely to benefit?, J. Cardiovasc. Nurs., 20 (2005), 198–205 | DOI
[6] Karavidas M. K., Lehrer P. M., Vaschillo E., Vaschillo B., Marin H., Buyske S., Malinovsky I., Radvanski D., Hassett A., “Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression”, Appl. Psychophysiol. Biofeedback, 32 (2007), 19–30 | DOI
[7] Hassett A. L., Radvanski D. C., Vaschillo E. G., Vaschillo B., Sigal L. H., Karavidas M. K., Buyske S., Lehrer P. M., “A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia”, Appl. Psychophysiol Biofeedback, 32 (2007), 1–10 | DOI
[8] Horsman H. M., Tzeng Y. C., Galletly D. C., Peebles K. C., “The repeated sit-to-stand maneuver is a superior method for cardiac baroreflex assessment: a comparison with the modified Oxford method and Valsalva maneuver”, Am. J. Physiol. Regul. Integr. Comp. Physiol., 307 (2014), R1345–52 | DOI
[9] Lehrer P. M., Gevirtz R., Heart rate variability biofeedback: how and why does it work?, Front. Psychol., 5 (2014), 756 | DOI
[10] Bernardi L. C., Porta A., Gabutti L., Spicuzza L., Sleight P., “Modulatory effects of respiration”, Auton. Neurosci. Basic and Clin., 90 (2001), 47–56 | DOI
[11] Ferrario M., Moissl U., Garzotto F., Cruz D. N., Tetta C., Signorini M. G., Ronco C., Grassmann A., Cerutti S., Guzzetti S., “The forgotten role of central volume in low frequency oscillations of heart rate variability”, PLoS ONE, 10 (2015), e0120167 | DOI
[12] Seydnejad S. R., Kitney R. I., “Modeling of Mayer waves generation mechanisms”, IEEE Eng. Med. Biol. Mag., 20 (2001), 92–100 | DOI
[13] Ursino M., Magosso E., “Role of short term cardiovascular regulation in heart rate variability: a modeling study”, Am. J. Physiol. Heart Circ. Physiol., 284 (2003), H1479–H1493 | DOI
[14] Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y., “Model for complex heart rate dynamics in health and diseases”, Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 72 (2005), 041904 | DOI
[15] Yildiz M., Ider Y. Z., “Model based and experimental investigation of respiratory effect on the HRV power spectrum”, Physiol. Meas., 27 (2006), 973–988 | DOI
[16] Grinevich A. A., Tankanag A. V., Safronova V. G., Chemeris N. K., “Role of additive stochastic modulation of the heart activity in the formation of 0.1 Hz blood flow oscillations in the human cardiovascular system”, Doklady Biological Sciences, 468 (2016), 106–111 | DOI
[17] Tsanas A., Goulermas J. Y., Vartela V., Tsiapras D., Theodorakis G., Fisher A. C., Sfirakis P., “The Windkessel model revisited: a qualitative analysis of the circulatory system”, Medical Engineering Physics, 31 (2009), 581–588 | DOI
[18] Tankanag A. V., Chemeris N. K., “Application of adaptive wavelet transform for analysis of blood flow oscillations in the human skin”, Phys. Med. Biol., 53 (2008), 5967–5976 | DOI
[19] MEDUNIVER. com: Human Physiology, (In Russ.) (accessed 03 Jun 2016) http://meduniver.com/Medical/Physiology/356.html
[20] Grinevich A. A., Tankanag A. V., Chemeris N. K., “Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1 Hz”, Math. Biol. Bioinf., 9 (2014), 341–358 | DOI