Fractal model of the protoplant's appearance
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 225-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sectional model of the tree's system branches, which was published earlier, was extended on the range $(0.1)$ of model's allometric parameter $\mu$, relating the magnitude of the green biomass of a tree and its size (for spruce $\mu\approx 1.83$). The model showed the presence of a green biomass in this range. According to the statements of fractal geometry this points out a possibility to interpret the placement of green biomass as a set of photosynthesis points. In turn according to contemporary notions about endosymbiotic character of appearance of organelles in eukaryotic cell this was interpreted as begin of endosymbiosis of cyanobacteria and a host (protist). This has been modeled by the groups’ placement of growing number of points on an interval under initial limitation of the number of points per group. The limitation is connected to the initial absence in protist an infrastructure which is need for the growing number of cyanobacteria. It was demonstrated that initially in course of increasing total points number the parameter $\mu$ decreases from $1.0$ to $0.25$ under the fixed number of points per group and then increases to $1.0$ under the fixed number of groups. This gives an initial braking (slowdown) of growth of protoplant's size (a characteristic geometrical dimension of set of points) and then exponential growth after deleting limitation of point number per group in evolution's course of host endosymbiosis similarly to higher plants. Morphological analogy of situations of begin of plant embryogenesis and begin of seed germination with the situation described by the model of protoplant appearance is discussed.
@article{MBB_2016_11_2_a12,
     author = {V. V. Galitskii},
     title = {Fractal model of the protoplant's appearance},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {225--232},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a12/}
}
TY  - JOUR
AU  - V. V. Galitskii
TI  - Fractal model of the protoplant's appearance
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 225
EP  - 232
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a12/
LA  - ru
ID  - MBB_2016_11_2_a12
ER  - 
%0 Journal Article
%A V. V. Galitskii
%T Fractal model of the protoplant's appearance
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 225-232
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a12/
%G ru
%F MBB_2016_11_2_a12
V. V. Galitskii. Fractal model of the protoplant's appearance. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 2, pp. 225-232. http://geodesic.mathdoc.fr/item/MBB_2016_11_2_a12/

[1] Galitskii V. V., “O dinamike raspredeleniya po vysote biomassy svobodno rastuschego dereva”, Doklady akademii nauk, 407:4 (2006), 564–566

[2] Galitskii V. V., “Sektsionnaya struktura dereva. Modelnyi analiz vertikalnogo raspredeleniya biomassy”, Zhurn. obsch. biol., 71:1 (2010), 19–29

[3] Galitskii V. V., “Modelnyi analiz dinamiki dalnego transporta assimilyatov svobodno rastuschego dereva”, Matematicheskaya biologiya i bioinformatika, 4:1 (2009), 1–20 | DOI

[4] Galitskii V. V., “Modeli dinamiki dereva i soobschestva derevev: razvitie ot dvukhmernykh k trekhmernym modelyam”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 54–80 | DOI

[5] Galitskii V. V., “Sektsionnaya model nesvobodnogo rosta dereva”, Kompyuternye issledovaniya i modelirovanie, 8:2 (2016), 307–322 (data obrascheniya: 28.02.2016) http://crm.ics.org.ru/uploads/crmissues/crm_2016_2/16.08.09.pdf

[6] Galitskii V. V., “Dinamika biomassy vetvei vysshikh poryadkov dereva. Modelnyi analiz”, Zhurn. obsch. biol., 73:6 (2012), 442–452

[7] Tselniker Yu. L., “Struktura krony eli”, Lesovedenie, 1994, no. 4, 35–44

[8] Kazimirov N. I., Elniki Karelii, Nauka, L., 1971, 139 pp.

[9] Kramer P. D., Kozlovskii T. T., Fiziologiya drevesnykh rastenii, Lesn. Prom., M., 1983, 462 pp.

[10] Treskin P. P., “Zakonomernosti morfogeneza skeletnoi chasti krony vzrosloi eli”, Struktura i produktivnost elovykh lesov yuzhnoi taigi, Nauka, L., 1973, 222–240

[11] Feder E., Fraktaly, Mir, M., 1991, 260 pp.

[12] Galitskii V. V., “Ob evolyutsii formy dereva po fraktalnomu parametru”, Quantitative Biology, 2013 (data obrascheniya: 28.02.2016) http://vixra.org/abs/1311.0105

[13] Margelis L., Rol simbioza v evolyutsii kletki, Mir, M., 1983, 351 pp.

[14] Borisov N. M., Vorobev F. Yu., Gilyarov A. M., Eskov K. Yu., Zhuravlev A. Yu., Markov A. V., Oskolskii A. A., Petrov P. N., Shipunov A. B., Dokazatelstva evolyutsii. Problemy Evolyutsii, ed. A. V. Markov, 2010 (data obrascheniya: 28.02.2016) http://evolbiol.ru/evidence.htm

[15] Gamalei Yu. V., “Priroda pischevogo trakta v vaskulyarnykh rasteniyakh”, Tsitologiya, 51:5 (2009), 375–387

[16] Hanson M. R., Kohler R. H., A Novel View of Chloroplast Structure, Plant physiology online, , 2006 (data obrascheniya: 28.02.2016) http://6e.plantphys.net/essay07.01.html

[17] Malakhov V. V., “Velikii simbioz: proiskhozhdenie eukariotnoi kletki”, V mire nauki, 2004, no. 2, 70–79

[18] Zhukova G. Ya., Plastidy zarodysha tsvetkovykh rastenii, Avtoref. d.b.n., Spb., 1992

[19] Serebryakova T. I., Voronin N. S., Elenevskii A. G., Batygina T. B., Shorina R. I., Savinykh N. P., Botanika s osnovami fitotsenologii: Anatomiya i morfologiya rastenii, Akademkniga, M., 2006, 543 pp.

[20] Tejos R. I., Mercado A. V., Meisel L. A., “Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis”, Biol. Res., 43 (2010), 99–111 | DOI

[21] Allorent G., Courtois F., Chevalier F., Lerbs-Mache S., “Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation”, Plant Mol Biol., 82 (2013), 59–70 | DOI

[22] Nakajima S., Ito H., Tanaka R., Tanaka A., “Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds”, Plant Physiology, 160 (2012), 261–273 | DOI

[23] Smolikova G. N., Medvedev S. S., “Fotosintez v semenakh khloroembriofitov”, Fiziologiya rastenii, 63:1 (2016), 3–16 | DOI | Zbl