The use of optimal partitionings for multiparameter data analysis in clinical trials
Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 1, pp. 46-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A predictive model is presented which allows estimating six-month-risk of cardiovascular disease in patients discharged from hospital after acute coronary syndrome. A database, that has been collected from 16 medical centers in seven Russian cities during seven years, was used to create the model. The database contains a wide range of clinical, biochemical and genetic characteristics. The approaches based on the use of optimal partitioning, such as the method of optimal valid partitioning (OVD) and the modified method of statistically weighted syndromes (MSWS), were used in order to create the predictive model. The accuracy of the model is quite well and is estimated by the value of AUC=0.72. This model shows the better predictive ability in comparison with the most widely used methods such as logistic regression, usage of decision trees, neural networks etс.
@article{MBB_2016_11_1_a0,
     author = {R. R. Guliev and O. V. Senko and D. A. Zateishchikov and V. V. Nosikov and I. V. Uporov and A. V. Kuznetsova and M. A. Evdokimova and S. N. Tereshchenko and E. V. Akatova and M. G. Glaser and A. S. Galyavich and N. A. Koziolova and A. V. Yagoda and O. I. Boeva and S. V. Shlyk and S. Yu. Levashov and V. O. Konstantinov and V. A. Brazhnik and S. D. Varfolomeev and I. N. Kurochkin},
     title = {The use of optimal partitionings for multiparameter data analysis in clinical trials},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {46--63},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a0/}
}
TY  - JOUR
AU  - R. R. Guliev
AU  - O. V. Senko
AU  - D. A. Zateishchikov
AU  - V. V. Nosikov
AU  - I. V. Uporov
AU  - A. V. Kuznetsova
AU  - M. A. Evdokimova
AU  - S. N. Tereshchenko
AU  - E. V. Akatova
AU  - M. G. Glaser
AU  - A. S. Galyavich
AU  - N. A. Koziolova
AU  - A. V. Yagoda
AU  - O. I. Boeva
AU  - S. V. Shlyk
AU  - S. Yu. Levashov
AU  - V. O. Konstantinov
AU  - V. A. Brazhnik
AU  - S. D. Varfolomeev
AU  - I. N. Kurochkin
TI  - The use of optimal partitionings for multiparameter data analysis in clinical trials
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2016
SP  - 46
EP  - 63
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a0/
LA  - ru
ID  - MBB_2016_11_1_a0
ER  - 
%0 Journal Article
%A R. R. Guliev
%A O. V. Senko
%A D. A. Zateishchikov
%A V. V. Nosikov
%A I. V. Uporov
%A A. V. Kuznetsova
%A M. A. Evdokimova
%A S. N. Tereshchenko
%A E. V. Akatova
%A M. G. Glaser
%A A. S. Galyavich
%A N. A. Koziolova
%A A. V. Yagoda
%A O. I. Boeva
%A S. V. Shlyk
%A S. Yu. Levashov
%A V. O. Konstantinov
%A V. A. Brazhnik
%A S. D. Varfolomeev
%A I. N. Kurochkin
%T The use of optimal partitionings for multiparameter data analysis in clinical trials
%J Matematičeskaâ biologiâ i bioinformatika
%D 2016
%P 46-63
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a0/
%G ru
%F MBB_2016_11_1_a0
R. R. Guliev; O. V. Senko; D. A. Zateishchikov; V. V. Nosikov; I. V. Uporov; A. V. Kuznetsova; M. A. Evdokimova; S. N. Tereshchenko; E. V. Akatova; M. G. Glaser; A. S. Galyavich; N. A. Koziolova; A. V. Yagoda; O. I. Boeva; S. V. Shlyk; S. Yu. Levashov; V. O. Konstantinov; V. A. Brazhnik; S. D. Varfolomeev; I. N. Kurochkin. The use of optimal partitionings for multiparameter data analysis in clinical trials. Matematičeskaâ biologiâ i bioinformatika, Tome 11 (2016) no. 1, pp. 46-63. http://geodesic.mathdoc.fr/item/MBB_2016_11_1_a0/

[1] The top 10 causes of death, , World Health Organization (data obrascheniya: 03.02.2016) http://www.who.int/mediacentre/factsheets/fs310/

[2] Antman E. M., Cohen M., Bernink P. J., McCabe C. H., Horacek T., Papuchis G., Mautner B., Corbalan R., Radley D., Braunwald E., “The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making”, Journal of the American Medical Association, 284:7 (2000), 835–842 | DOI

[3] Pollack C. V. Jr., Sites F. D., Shofer F. S., Sease K. L., Hollander J. E., “Application of the TIMI Risk Score for Unstable Angina and Non-ST Elevation Acute Coronary Syndrome to an Unselected Emergency Department Chest Pain Population”, Academic Emergency Medicine, 13:1 (2006), 13–18 | DOI | MR

[4] Boersma E., Pieper K. S., Steyerberg E. W., Wilcox R. G., Chang W., Lee K. L., Akkerhuis K. M., Harrington R. A., Deckers J. W., Armstrong P. W. et al., “Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation. Results from an international trial of 9461 patients”, Circulation, 101:22 (2000), 2557–2567 | DOI

[5] Granger C. B., Goldberg R. J., Dabbous O., Pieper K. S., Eagle K. A., Cannon C. P., Van de Werf F., Avezum A., Goodman S. G., Flather M. D. et al., “Predictors of hospital mortality in the global registry of acute coronary events”, Archives of Internal Medicine, 163:19 (2003), 2345–2353 | DOI

[6] Eagle K. A., Lim M. J., Dabbous O. H., Pieper K. S., Goldberg R. J., Van de Werf F., Goodman S. G., Granger C. B., Steg P. G., Gore J. M. et al., “A validated prediction model for all forms of acute coronary syndrome. Estimating the risk of 6-month postdischarge death in an international registry”, Journal of the American Medical Association, 291:22 (2004), 2727–2733 | DOI

[7] Senko O. V., Kuznetsova A. V., “A recognition method based on collective decision making using systems of regularities of various types”, Pattern Recognition and Image Analysis, 20:2 (2010), 152–162 | DOI

[8] Kuznetsova A. V., Kostomarova I. V., Senko O. V., “Modification of the method of optimal valid partitioning for comparison of patterns related to the occurrence of ischemic stroke in two groups of patients”, Pattern Recognition and Image Analysis, 24:1 (2014), 114–123 | DOI

[9] Senko O. V., Kuznetsova A. V., “The Optimal Valid Partitioning Procedures”, InterStat, 2006, 2

[10] Kuznetsov V. A., Senko O. V., Kuznetsova A. V., Semenova L. P., Aleschenko A. V., Gladysheva T. B., Ivshina A. V., “Raspoznavanie nechetkikh sistem po metodu statisticheski vzveshennykh sindromov i ego primenenie dlya immunogematologicheskoi normy i khronicheskoi patologii”, Khimicheskaya fizika, 15:1 (1996), 81–100 | Zbl

[11] Ivshina A. V., George J., Senko O. V., Mow B., Putti T. C., Smeds J., Lindahl T., Pawitan Y., Hall P., Nordgren H., Wong J. E. L., Liu E. T., Bergh J., Kuznetsov V. A., Miller L. D., “Genetic Reclassification of Histologic Grade Delineates New Clinical Subtypes of Breast Cancer”, Cancer Research, 66:21 (2006), 10292–10301 | DOI

[12] Zakovryashin A. S., Zakovryashina S. E., Dorovskikh I. V., Senko O. V., Kuznetsova A. V., Kozlov A. A., “Prognozirovanie otdalennykh posledstvii psikhogennykh rasstroistv u voennosluzhaschikh v ostrom periode boevoi psikhicheskoi travmy (s ispolzovaniem logiko-statisticheskikh metodov)”, Zhurnal nevrologii i psikhiatrii imeni S. S. Korsakova, 106:3 (2006), 31–38

[13] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009, 533 pp. | MR | Zbl

[14] Zateischikov D. A., Volkova E. G., Guz I. O., Evdokimova M. A., Aseicheva O. Yu., Galyavich A. S., Tereschenko S. N., Kaziolova N. A., Glezer M. G., Yagoda A. V. i dr., “Lechenie bolnykh, perenesshikh ostryi koronarnyi sindrom, po dannym rossiiskogo mnogotsentrovogo prospektivnogo nablyudatelnogo issledovaniya”, Farmateka, 2009, no. 12, 109–113

[15] Chumakova O. S., Selezneva N. D., Evdokimova M. A., Osmolovskaya V. S., Kochkina M. S., Aseicheva O. Yu., Minushkina L. O., Baklanova T. N., Talyzin P. A., Tereschenko S. N. i dr., “Prognosticheskoe znachenie aortalnogo stenoza u bolnykh, perenesshikh obostrenie ishemicheskoi bolezni serdtsa”, Kardiologiya, 2011, no. 1, 23–28

[16] Blagodatskikh K. A., Evdokimova M. A., Agapkina Yu. V., Nikitin A. G., Brovkin A. N., Pushkov A. A., Blagodatskikh E. G., Kudryashova O. Yu., Osmolovskaya V. S., Minushkina L. O. i dr., “Polimorfnye markery G(-174)C gena IL6 i G(-1082)A gena IL10 i geneticheskaya predraspolozhennost k neblagopriyatnomu techeniyu ishemicheskoi bolezni serdtsa u bolnykh, perenesshikh ostryi koronarnyi sindrom”, Molekulyarnaya biologiya, 44:5 (2010), 839–846

[17] Blagodatskikh K. A., Nikitin A. G., Pushkov A. A., Blagodatskikh E. G., Osmolovskaya B. C., Aseicheva O. Yu., Baklanova T. N., Talyzin P. A., Tereschenko C. H., Dzhaiani N. A. i dr., “Polimorfnye markery G2667C, G3014A, C3872T, A5237G gena CRP i geneticheskaya predraspolozhennost k neblagopriyatnomu techeniyu ishemicheskoi bolezni serdtsa u bolnykh, perenesshikh obostrenie ishemicheskoi bolezni serdtsa”, Meditsinskaya genetika, 10:4 (2011), 3–9

[18] BMI Classification. World Health Organization: Global Database on Body Mass Index, (data obrascheniya: 03.02.2016) http://apps.who.int/bmi/index.jsp?introPage=intro_3.html

[19] Cockroft D. W., Gault M. H., “Prediction of creatinine clearance from serum creatinine”, Nephron, 16:1 (1976), 31–41 | DOI

[20] Wing R. R., Matthews K. A., Kuller L. H., Meilahn E. N., Plantinga P., “Waist to hip ratio in middle-aged women. Associations with behavioral and psychosocial factors and with changes in cardiovascular risk factors”, Arteriosclerosis, Thrombosis, and Vascular Biology, 11:5 (1991), 1250–1257 | DOI

[21] Kuznetsova A. V., Kostomarova I. V., Senko O. V., “Logiko-statisticheskii analiz svyazi kliniko-laboratornykh pokazatelei s vozniknoveniem narusheniya mozgovogo krovoobrascheniya u patsientov pozhilogo vozrasta s khronicheskoi ishemiei golovnogo mozga”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 182–224 | DOI

[22] Kuznetsova A. V., Kostomarova I. V., Vodolagina N. N., Malygina N. A., Senko O. V., “Izuchenie vliyaniya kliniko-geneticheskikh faktorov na techenie distsirkulyatornoi entsefalopatii s ispolzovaniem metodov raspoznavaniya”, Matematicheskaya biologiya i bioinformatika, 6:1 (2011), 115–146 | DOI

[23] Paklin N., Logisticheskaya regressiya i ROC-analiz — matematicheskii apparat, BaseGroup Labs: Tekhnologii analiza dannykh, (data obrascheniya: 03.02.2016) https://basegroup.ru/community/articles/logistic

[24] Vorontsov K. V., “Kombinatornyi podkhod k otsenke kachestva obuchaemykh algoritmov”, Matematicheskie voprosy kibernetiki, 13 (2004), 5–36

[25] IBM SPSS Statistics 23 Documentation, (data obrascheniya: 03.02.2016) http://www-01.ibm.com/support/docview.wss?uid=swg27043946

[26] IBM SPSS Modeler 17.0 Documentation, (data obrascheniya: 03.02.2016) http://www-01.ibm.com/support/docview.wss?uid=swg27043831

[27] Uzly modelirovaniya IBM SPSS Modeler 17, (data obrascheniya: 03.02.2016) http://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/17.0/ru/ModelerModelingNodes.pdf

[28] GRACE 2.0 ACS Risk Calculator, (data obrascheniya: 03.02.2016) http://www.gracescore.org/WebSite/WebVersion.aspx