Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2015_10_a4, author = {N. L. Lunina and T. E. Petrova and A. G. Urzhumtsev and V. Y. Lunin}, title = {The use of connected masks for reconstructing the single particle image from {X-ray} diffraction data. {II.~The} dependence of the accuracy of the solution on the sampling step of experimental data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t56--t72}, publisher = {mathdoc}, volume = {10}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_a4/} }
TY - JOUR AU - N. L. Lunina AU - T. E. Petrova AU - A. G. Urzhumtsev AU - V. Y. Lunin TI - The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II.~The dependence of the accuracy of the solution on the sampling step of experimental data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2015 SP - t56 EP - t72 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2015_10_a4/ LA - en ID - MBB_2015_10_a4 ER -
%0 Journal Article %A N. L. Lunina %A T. E. Petrova %A A. G. Urzhumtsev %A V. Y. Lunin %T The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II.~The dependence of the accuracy of the solution on the sampling step of experimental data %J Matematičeskaâ biologiâ i bioinformatika %D 2015 %P t56-t72 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2015_10_a4/ %G en %F MBB_2015_10_a4
N. L. Lunina; T. E. Petrova; A. G. Urzhumtsev; V. Y. Lunin. The use of connected masks for reconstructing the single particle image from X-ray diffraction data. II.~The dependence of the accuracy of the solution on the sampling step of experimental data. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015), pp. t56-t72. http://geodesic.mathdoc.fr/item/MBB_2015_10_a4/
[1] Miao J., Kirz J., Sayre D., “The oversampling phasing method”, Acta Crystallographica Section D: Biological Crystallography, 56 (2000), 1312–1315 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444900008970'>10.1107/S0907444900008970</ext-link>
[2] Thibault P., Elser V., Jacobsen C., Shapiro D., Sayre D., “Reconstruction of a yeast cell from X-ray diffraction data”, Acta Crystallographica Section A: Foundations of Crystallography, 62 (2006), 248–261 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767306016515'>10.1107/S0108767306016515</ext-link>
[3] Song C., Jiang H., Mancuso A., Amirbekian B., Peng L., Sun R., Shah S. S., Zhou Z. H., Ishikawa T., Miao J., “Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays”, Physical Review Letters, 101 (2008), 158101 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.101.158101'>10.1103/PhysRevLett.101.158101</ext-link>
[4] Maia F. R. N., Ekeberg T., van der Spoel D., Hajdu J., Journal of Applied Crystallography, 43 (2010), 1535–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0021889810036083'>10.1107/S0021889810036083</ext-link>
[5] Seibert M. M., Ekeberg T., Maia F. R. N. C., Svenda M., Andreasson J., Jonsson O., Odic D., Iwan B., Rocker A., Westphall D. et al., “Single mimivirus particles intercepted and imaged with an X-ray laser”, Nature, 470 (2011), 78–82 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature09748'>10.1038/nature09748</ext-link>
[6] Van der Schot G., Svenda M., Maia F. R. N. C., Hantke M., DePonte D., Seibert M. M., Aquila A., Schulz J., Kirian R., Liang M. et al., “Imaging single cells in a beam of live cyanobacteria with an X-ray laser”, Nature Communication, 6 (2015), 5704 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/ncomms6704'>10.1038/ncomms6704</ext-link>
[7] Feigin L. A., Svergun D. I., Structure Analysis by Small-Angle X-ray and Neutron Scattering, Shpringer, 1987
[8] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The Protein Data Bank”, Nucleic Acids Research, 28 (2000), 235–242 (data obrascheniya: 22.11.2015) <ext-link ext-link-type='uri' href='http://www.rcsb.org/'>http://www.rcsb.org/</ext-link><ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/28.1.235'>10.1093/nar/28.1.235</ext-link>
[9] Sayre D., “Some implications of a theorem due to Shannon”, Acta Crystallographica, 5 (1952), 843 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0365110X52002276'>10.1107/S0365110X52002276</ext-link>
[10] Bricogne G., “Geometric sources of redundancy in intensity data and their use for phase determination”, Acta Crystallographica Section A: Foundations of Crystallography, 30 (1974), 349–405
[11] Bricogne G., “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica Section A: Foundations of Crystallography, 32 (1976), 832–847 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001691'>10.1107/S0567739476001691</ext-link>
[12] Fienup J. R., “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OL.3.000027'>10.1364/OL.3.000027</ext-link>
[13] Zhang K. Y. J., Cowtan K. D., Main P., “Phase improvement by iterative density modification”, International Tables for Crystallography, F (2012), 385–400 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/97809553602060000847'>10.1107/97809553602060000847</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=817988'>817988</ext-link>
[14] Lunin V. Y., Lunina N. L., Petrova T. E., “The use of connected masks for reconstructing the single particle image from X-ray diffraction data”, Mathematical Biology and Bioinformatics, 10, Suppl. (2015), t1–t19
[15] Lunin V. Y., Lunina N. L., Petrova T. E., Baumstark M. W., Urzhumtsev A. G., “Maskbased approach to phasing of single-particle diffraction data”, Acta Crystallographica Section D: Biological Crystallography, 72 (2016) (to appear)
[16] Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauß N., “Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution”, Nature, 411 (2001), 909–917 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35082000'>10.1038/35082000</ext-link>
[17] Rossmann M. G., Arnold E., “Noncrystallographic symmetry averaging of electron density for molecular-replacement phase refinement and extension”, International Tables for Crystallography, F (2012), 352–363 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/97809553602060000842'>10.1107/97809553602060000842</ext-link>
[18] Matthews B. M., “Solvent content of protein crystals”, Journal of Molecular Biology, 33 (1968), 491–497 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0022-2836(68)90205-2'>10.1016/0022-2836(68)90205-2</ext-link>
[19] Weichenberger C. X., Rupp B., “Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate”, Acta Crystallographica Section D: Biological Crystallography, 70 (2014), 1579–1588 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1399004714005550'>10.1107/S1399004714005550</ext-link>