A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015), pp. t39-t55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study presents the results of analysis of protein sequence database for prokaryotic microorganisms, which revealed a conservative peptide sequence element of 11 amino acid residues in 20 loci of 16 functionally and phylogenetically differing conservative proteins from representatives of various taxa. This amino acid motif IKAVRELGLER is presumably one of the Last Universal Peptide Ancestors (LUPAs). A fragment of ribosomal RNA (part of the A-site including stems H92, H90 and H93 of the peptidyl transferase center, PTC) translated from one of the potential reading frames is likely to be a source of genetic information for this sequence. We define this m/rRNA fragment with a function of a template for LUPA synthesis as the Last Universal RiboNucleic Ancestor (LURNA). We assume that LURNA and the peptides translated from its sequence were a source of the modern diversity of peptides.
@article{MBB_2015_10_a3,
     author = {N. E. Skoblikov and A. A. Zimin},
     title = {A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t39--t55},
     publisher = {mathdoc},
     volume = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_a3/}
}
TY  - JOUR
AU  - N. E. Skoblikov
AU  - A. A. Zimin
TI  - A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - t39
EP  - t55
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_a3/
LA  - ru
ID  - MBB_2015_10_a3
ER  - 
%0 Journal Article
%A N. E. Skoblikov
%A A. A. Zimin
%T A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P t39-t55
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_a3/
%G ru
%F MBB_2015_10_a3
N. E. Skoblikov; A. A. Zimin. A search for relict ribonucleotide and amino acid sequences that played a key role in the development of the ribosome and modern protein diversity. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015), pp. t39-t55. http://geodesic.mathdoc.fr/item/MBB_2015_10_a3/

[1] Koonin E. V., The Logic of Chance: The Nature and Origin of Biological Evolution, FT Press, Upper Saddle River, 2011, 528 pp.

[2] Caetano-Anolles G., Wang M., Caetano-Anolles D., Mittenthal J. E., “The origin, evolution and structure of the protein world”, Biochem. J., 417 (2009), 621–637 <ext-link ext-link-type='doi' href='https://doi.org/10.1042/BJ20082063'>10.1042/BJ20082063</ext-link>

[3] Sobolevsky Y., Guimaraes R. C., Trifonov E. N., “Towards functional repertoire of the earliest proteins”, J. Biomol. Struct. Dyn., 31:11 (2013), 1293–300 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/07391102.2012.735623'>10.1080/07391102.2012.735623</ext-link>

[4] de Farias S. T., do Rego T. G., José M. V., “Evolution of transfer RNA and the origin of the translation system”, Front. Genet., 5 (2014), 303 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fgene.2014.00303'>10.3389/fgene.2014.00303</ext-link>

[5] Root-Bernstein M., Root-Bernstein R., “The ribosome as a missing link in the evolution of life”, Journal of Theoretical Biology, 367:21 (2015), 130–158 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2014.11.025'>10.1016/j.jtbi.2014.11.025</ext-link>

[6] Greber B. J., Boehringer D., Leitner A., Bieri P., Voigts-Hoffmann F., Erzberger J. P., Leibundgut M., Aebersold R., Ban N., “Reductive evolution of the mitochondrial 16S rRNA”, Nature, 505 (2014), 515–519 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature12890'>10.1038/nature12890</ext-link>

[7] Bokov K., Steinberg S. V., “A hierarchical model for evolution of 23S ribosomal RNA”, Nature, 457 (2009), 977–980 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature07749'>10.1038/nature07749</ext-link>

[8] Hsiao Ch., Mohan S., Kalahar B. K., Williams L. D., “Peeling the onion: ribosomes are ancient molecular fossils”, Mol. Biol. Evol., 26:11 (2009), 2415–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/molbev/msp163'>10.1093/molbev/msp163</ext-link>

[9] Polacek N., Mankin A. S., “The ribosomal peptidyl transferase center: structure, function, evolution, inhibition”, Crit. Rev. Biochem. Mol. Biol., 40:5 (2005), 285–311 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/10409230500326334'>10.1080/10409230500326334</ext-link>

[10] Cavalier-Smith T., “Rooting the tree of life by transition analyses”, Biology Direct, 1 (2006), 19 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1745-6150-1-19'>10.1186/1745-6150-1-19</ext-link>

[11] Copley S. D., Smith E., Morowitz H. J., “A mechanism for the association of amino acids with their codons and the origin of the genetic code”, Proc Natl Acad Sci USA, 102:12 (2005), 4442–4447 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0501049102'>10.1073/pnas.0501049102</ext-link>

[12] Miller S. L., Urey H. C., “Organic compound synthesis on the primitive Earth”, Science, 3370:130 (1959), 245–251 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.130.3370.245'>10.1126/science.130.3370.245</ext-link>

[13] GENBANK Entrez Nucleotide Database, (accessed 15.03.2015) <ext-link ext-link-type='uri' href='http://www.ncbi.nlm.nih.gov/nucleotide/'>http://www.ncbi.nlm.nih.gov/nucleotide/</ext-link>

[14] Basic Local Alighnment Search Tool, (accessed 15.03.2015) <ext-link ext-link-type='uri' href='http://blast.ncbi.nlm.nih.gov/Blast.cgi'>http://blast.ncbi.nlm.nih.gov/Blast.cgi</ext-link>

[15] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., “Basic local alignment search tool”, J. Mol. Biol., 215:3 (1990), 403–410 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-2836(05)80360-2'>10.1016/S0022-2836(05)80360-2</ext-link>

[16] Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J., “Multiple sequence alignment with Clustal X”, Trends Biochem. Sci., 23 (1998), 403–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0968-0004(98)01285-7'>10.1016/S0968-0004(98)01285-7</ext-link>

[17] Woese C., “The universal ancestor”, PNAS, 95:12 (1998), 6854–6859 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.95.12.6854'>10.1073/pnas.95.12.6854</ext-link>

[18] Petrov A. S., Bernier C. R., Hsiao Ch., Norris A. M., Kovacs N. A., Waterbury C. C., Stepanov V. G., Harvey S. C., Fox G. E., Wartell R. M., Hud N. V., Williams L. D., “Evolution of the ribosome at atomic resolution”, PNAS, 111:28 (2014), 10251–10256 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.1407205111'>10.1073/pnas.1407205111</ext-link>

[19] Tamura K., “Ribosome evolution: Emergence of peptide synthesis machinery”, Journal of Biosciences, 36:5 (2011), 921–928 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12038-011-9158-2'>10.1007/s12038-011-9158-2</ext-link>

[20] Harish A., Caetano-Anolles G., “Ribosomal History Reveals Origins of Modern Protein Synthesis”, PLoS One, 7:3 (2012), e32776 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0032776'>10.1371/journal.pone.0032776</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3051791'>3051791</ext-link>

[21] Pascal R., Boiteau L., Forterre P., Gargaud M., Lazcano A., Lopez-Garcia P., Maurel M.-C., Moreira D., Pereto J., Prieur D., Reisse J., “Prebiotic Chemistry-Biochemistry-Emergence of Life (4.4–2 Ga)”, Earth, Moon and Planets, 98 (2007), 153–203 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11038-006-9089-3'>10.1007/s11038-006-9089-3</ext-link>

[22] Mulkidjanian A. Y., Galperin M. Y., “On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth”, Biol. Direct., 4 (2009), 27 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1745-6150-4-27'>10.1186/1745-6150-4-27</ext-link>

[23] Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E., “Genetics first or metabolism first? The formamide clue”, Chem. Soc. Rev., 41:16 (2012), 5526–5565 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/c2cs35066a'>10.1039/c2cs35066a</ext-link>

[24] Pino S., Sponer J. E., Costanzo G., Saladino R., Di Mauro E., “From Formamide to RNA, the Path Is Tenuous but Continuous”, Life, 5 (2015), 372–384 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/life5010372'>10.3390/life5010372</ext-link>

[25] Müller U. F., Bartel D. P., “Improved polymerase ribozyme efficiency on hydrophobic assemblies”, RNA, 14:3 (2008), 552–562 <ext-link ext-link-type='doi' href='https://doi.org/10.1261/rna.494508'>10.1261/rna.494508</ext-link>