The use of connected masks for reconstructing the single particle image from X-ray diffraction data
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015), pp. t1-t19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstructing the image of a single macromolecular object from X-ray diffraction data can be formulated as a problem of the reconstruction of the 3D electron density distribution from the magnitudes of its Fourier transform. This problem can be reduced to a series of standard X-ray crystallography tasks, namely, the recovery of a periodic function from its Fourier coefficients (structure factors) magnitudes, which are determined in an X-ray diffraction experiment. In this work, a new approach to the solution of these tasks is suggested which is based on the use of connected binary masks as an approximation of the required electron density distribution. The approach includes the random generation of a great number of connected masks, the selection of the masks that are in agreement with an experimental and a priori information about the object, and the alignment and the averaging of the phase sets of the structure factors that correspond to the selected masks. The averaged phase values together with the experimentally determined magnitudes are used for the calculation of the Fourier synthesis, which is applied for the visualization of the object under study. The approach can be used in studies of both single particles and crystalline species; however, it holds the greatest promise for investigations of single objects. The results of testing the approach are presented.
@article{MBB_2015_10_a0,
     author = {V. Y. Lunin and N. L. Lunina and T. E. Petrova},
     title = {The use of connected masks for reconstructing the single particle image from {X-ray} diffraction data},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t1--t19},
     publisher = {mathdoc},
     volume = {10},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_a0/}
}
TY  - JOUR
AU  - V. Y. Lunin
AU  - N. L. Lunina
AU  - T. E. Petrova
TI  - The use of connected masks for reconstructing the single particle image from X-ray diffraction data
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - t1
EP  - t19
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_a0/
LA  - en
ID  - MBB_2015_10_a0
ER  - 
%0 Journal Article
%A V. Y. Lunin
%A N. L. Lunina
%A T. E. Petrova
%T The use of connected masks for reconstructing the single particle image from X-ray diffraction data
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P t1-t19
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_a0/
%G en
%F MBB_2015_10_a0
V. Y. Lunin; N. L. Lunina; T. E. Petrova. The use of connected masks for reconstructing the single particle image from X-ray diffraction data. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015), pp. t1-t19. http://geodesic.mathdoc.fr/item/MBB_2015_10_a0/

[1] Krupyanskii Yu. F., Balabaev N. K., Petrova T. E., Sinitsyn D. O., Gryzlova E. V., Tereshkina K. B., Abdulnasyrov E. G., Stepanov A. S., Lunin V. Y., Grum-Grzhimailo A. N., “Femtosecond X-ray free-electron lasers: A new tool for studying nanocrystals and single macromolecules”, Russian Journal of Physical Chemistry B, 8 (2014), 445–456 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1990793114040046'>10.1134/S1990793114040046</ext-link>

[2] Sinitsyn D. O., Lunin V. Y., Grum-Grzhimailo A. N., Gryzlova E. V., Balabaev N. K., Lunina N. L., Petrova T. E., Tereshkina K. B., Abdulnasyrov E. G., Stepanov A. S., Krupyanskii Yu. F., “New possibilities of X-ray nanocrystallography of biological macromolecules based on X-ray free-electron lasers”, Russian Journal of Physical Chemistry B, 8 (2014), 457–463 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1990793114040125'>10.1134/S1990793114040125</ext-link>

[3] Lunin V. Y., Lunina N. L., Petrova T. E., Skovoroda T. P., Urzhumtsev A. G., Podjarny A. D., “Low-resolution ab initio phasing: problems and advances”, Acta Crystallographica Section D: Biological Crystallography, 56 (2000), 1223–1232 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444900010088'>10.1107/S0907444900010088</ext-link>

[4] Lunin V. Y., Urzhumtsev A. G., Podjarny A., “Ab initio phasing of low-resolution Fourier syntheses”, International Tables for Crysallography, v. F, Second Edition, eds. Arnold E., Himmel D. M., Rossmann M. G., John Wiley & Sons, 2011, 437–442

[5] Lunin V. Y., Lunina N. L., Urzhumtsev A. G., “Connectivity properties of high-density regions and ab initio phasing at low resolution”, Acta Crystallographica Section D: Biological Crystallography, 56 (2000), 375–382 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767300004633'>10.1107/S0108767300004633</ext-link>

[6] Bricogne G., “Methods and programs for direct-space exploitation of geometric redundancies”, Acta Crystallographica Section A: Foundations of Crystallography, 32 (1976), 832–847 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0567739476001691'>10.1107/S0567739476001691</ext-link>

[7] Fienup J. R., “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3:1 (1978), 27–29 <ext-link ext-link-type='doi' href='https://doi.org/10.1364/OL.3.000027'>10.1364/OL.3.000027</ext-link>

[8] Elser V., “Solution of the crystallographic phase problem by iterated projections”, Acta Crystallographica Section A: Foundations of Crystallography, 59 (2003), 201–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767303002812'>10.1107/S0108767303002812</ext-link>

[9] Baker D., Krukowski A. E., Agard D. A., “Uniqueness and the ab initio phase problem in macromolecular crystallography”, Acta Crystallographica Section D: Biological Crystallography, 49 (1993), 186–192 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444992008801'>10.1107/S0907444992008801</ext-link>

[10] Lunin V. Y., Urzhumtsev A. G., Skovoroda T. P., “Direct low-resolution phasing from electron-density histograms in protein crystallography”, Acta Crystallographica Section A: Foundations of Crystallography, 46 (1990), 540–544 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767390003464'>10.1107/S0108767390003464</ext-link>

[11] Lunin V. Y., Lunina N. L., “The map correlation coefficient for optimally superposed maps”, Acta Crystallographica Section A: Foundations of Crystallography, 52 (1996), 365–368 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767395015868'>10.1107/S0108767395015868</ext-link>

[12] Lunin V. Y., Urzhumtsev A., Bockmayr A., “Direct phasing by binary integer programming”, Acta Crystallographica Section A: Foundations of Crystallography, 58 (2002), 283–291 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767302004002'>10.1107/S0108767302004002</ext-link>

[13] Murakami S., Nakashima R., Yamashita E., Yamaguchi A., “Crystal structure of bacterial multidrug efflux transporter AcrB”, Nature, 419 (2002), 587–593 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature01050'>10.1038/nature01050</ext-link>

[14] Urzhumtsev A., Afonine P. V., Lunin V. Y., Terwilliger T. C., Adams P. D., “Metrics for comparison of crystallographic maps”, Acta Crystallographica Section D: Biological Crystallography, 70 (2014), 2593–2606 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S1399004714016289'>10.1107/S1399004714016289</ext-link>

[15] Lunin V. Y., Woolfson M. M., “Mean phase error and the map correlation coefficient”, Acta Crystallographica Section D: Biological Crystallography, 49 (1993), 530–533 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0907444993005852'>10.1107/S0907444993005852</ext-link>

[16] Lunin V. Y., Afonine P. V., Urzhumtsev A. G., “Likelihood-based refinement. I: Irremovable model errors”, Acta Crystallographica Section A: Foundations of Crystallography, 58 (2002), 270–282 <ext-link ext-link-type='doi' href='https://doi.org/10.1107/S0108767302001046'>10.1107/S0108767302001046</ext-link>