Complex plankton dynamics in a topographic eddy
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 416-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-uniform plankton distribution in the ocean is caused by interior and exterior factors. The exterior factors are the influence of habitat, mainly the ocean currents. Internal factors are the intra and extra species interactions. This study demonstrates the possibility or resonance between oscillations of habitat parameters and internal oscillations of plankton coenosis. In this case the non-uniform character of plankton distribution is most vividly pronounced.
@article{MBB_2015_10_2_a9,
     author = {A. I. Abakumov and Yu. G. Izrailsky and E. Ya. Frisman},
     title = {Complex plankton dynamics in a topographic eddy},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {416--426},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a9/}
}
TY  - JOUR
AU  - A. I. Abakumov
AU  - Yu. G. Izrailsky
AU  - E. Ya. Frisman
TI  - Complex plankton dynamics in a topographic eddy
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 416
EP  - 426
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a9/
LA  - ru
ID  - MBB_2015_10_2_a9
ER  - 
%0 Journal Article
%A A. I. Abakumov
%A Yu. G. Izrailsky
%A E. Ya. Frisman
%T Complex plankton dynamics in a topographic eddy
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 416-426
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a9/
%G ru
%F MBB_2015_10_2_a9
A. I. Abakumov; Yu. G. Izrailsky; E. Ya. Frisman. Complex plankton dynamics in a topographic eddy. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 416-426. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a9/

[1] Lyapunov A., “Ob izuchenii balansovykh sootnoshenii v biotsenoze”, Zhurnal obschei biologii, 29:6 (1968), 351–359

[2] Iorgensen S., Upravlenie ozernymi ekosistemami, Agropromizdat, M., 1985

[3] Dombrovskii Yu., Markman G., Prostranstvennaya i vremennaya uporyadochennost v ekologicheskikh i biokhimicheskikh sistemakh, Izd-vo Rostovskogo universiteta, 1983

[4] Kozlov V. F., Koshel K. V., “Khaoticheskaya advektsiya v modelyakh fonovykh techenii geofizicheskoi gidrodinamiki”, Fundamentalnye i prikladnye problemy teorii vikhrei, eds. Borisov A. V., Mamaev I. S., Sokolovskii M. A., M.–Izhevsk, 2003

[5] Kozlov V. F., “Fonovye techeniya v geofizicheskoi gidrodinamike”, Izvestiya AN. Fizika atmosfery i okeana, 31:2 (1995), 245–250

[6] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988

[7] Wiggins S., Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, New York, 1990 | MR | Zbl

[8] Ottino J., The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge, UK, 1997 | MR

[9] Aref H., “Integrable, chaotic, and turbulent vortex motion in two-dimensional flows”, Annual Review of Fluid Mechanics, 15:1 (1983), 345–389 | DOI | MR | Zbl

[10] Aref H., “Stirring by chaotic advection”, Journal of Fluid Mechanics, 143 (1984), 1–21 | DOI | MR | Zbl

[11] Aref H., “Chaotic advection of fluid particles”, Phil. Trans. Roy. Soc. London, 333:1631 (1990), 73–288

[12] Izrailsky Y. G., Koshel K. V., Stepanov D. V., “Determination of the optimal excitation frequency range in background flows”, Chaos, 18:1 (2008), 13107 | DOI | MR

[13] Abramovits M., Stigan I. M. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[14] Abrosov N., Bogolyubov A., Ekologicheskie i geneticheskie zakonomernosti sosuschestvovaniya i koevolyutsii vidov, Nauka, Novosibirsk, 1988